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Abstract
This paper describes the systems SRI-B has proposed for task-1
of the inaugural MERLIon CCS challenge in the closed domain
and open domain. Our system for the closed task is based on
an end-to-end conformer architecture trained for the task of au-
tomatic speech recognition using RNN-T loss, which is then
transfer learned for the task of language classification. We train
the ASR model initially to ease the task of learning the right fea-
tures for the classification task. This system achieves a 13.9%
Equal Error Rate (EER) and 81.7% Balanced Accuracy (BAC)
on the evaluation set. For the open track, we use an ensemble of
Open AI’s Whisper model and one of the ASR models used our
closed track. This system achieves 9.5% EER and 78.9% BAC
on the evaluation set. Compared to the challenge baseline we
observe relative improvements for EER of 35.9% in the closed
track and 56.2% in the open track. We achieve 1st position on
both the closed and the open track leaderboards.
Index Terms: language identification, speech recognition

1. Introduction
Recent advancements in automatic speech processing have re-
sulted in systems which perform very well within the con-
straints of particular use cases such as voice assistants having
great recognition for native speakers. The robustness of these
systems is closely related to the availability of training data re-
sources and is largely biased toward standard statistics. Speech
recognition for adult speech performs better compared to chil-
dren’s speech due to the scarcity of children’s training data.
Similarly, people having strong accents suffer terribly in terms
of recognition performance. It’s always challenging to work
with natural, conversational, multilingual, and code-switched
speech.

The MERLion CCS challenge focused on the shortcom-
ings of existing systems and presented the challenge to develop
robust spoken language identification and diarization systems.
The systems should work reliably for non-standard accents,
code-switched, and children’s speech. As part of this challenge,
the organizers have shared audio recordings from the Talk to-
gether study where the adults are narrating the onscreen pic-
turebook to children, which consists of natural conversation be-
tween parents & children over a video call in a code-switched
(English - Mandarin) manner. The language identification track
for the challenge is split into closed and open tracks. No extra
data can be used in the closed track, whereas in the open track,
any publicly available pre-trained models and upto 200 hours of
extra data can be utilized. Our key contributions to this paper
are as follows,

† denotes equal contribution

• Automatic speech recognition(ASR) pre-training for the
closed domain.

• Weighted cross-entropy loss to improve balanced accuracy.
• Ensemble of models for the final prediction.
• Utilization of pre-trained Whisper models which perform re-

ally well even without domain adaptation.
• Fine-tuning on the development set to significantly improve

performance.

2. Related work
Inspired by the success of the acoustic models using deep neural
networks (DNNs), [1] proposed DNN based language identifi-
cation (LID) system and compared it with traditional i-vector
based methods. They demonstrated with the increase in train-
ing data size DNNs performed better. [2] proposed the LSTM-
based model to exploit the sequence modeling capability by
capturing the contextual information. On the contrary, [3] used
the CNN models to extract the bottleneck features and used it
along with other acoustic features to train GMM-i-vector LID
system. To get the best of both in terms of feature extraction and
capturing temporal information, in [4] uses Convolution and
LSTM (CLSTM) along with time & frequency domain atten-
tion mechanism. Recently [5] publish the architecture where the
encoder learns the intermediate vector representation using 1D
depth-wise separable convolutions and squeeze-and-excitation
layers then pass it to a classifier for language identification.

[6] and [7] show that the acoustic representations learned
by the neural network from audio learn the accent and hence
fail to discriminate in case of non-native speech. The system
performance is inversely correlated to the strength of the accent
and is still poor even if the non-native speakers are proficient.

[8] uses MFCC and Fbank features in the RNN-T model to
come up with language embeddings. They use statistical pool-
ing to combine the frame-level encoder outputs with ASR pre-
dictions at the utterance level. Other representations like CPC
(contrastive predictive coding) [9] and mel frequency spectral
features [10] have been shown to possess more language dis-
criminative power than MFCC, especially in cross-domain sce-
narios.

Considering the reliability of the ASR hypothesis for lan-
guage identification, joint ASR and LID training has been con-
sidered by [11]. On similar lines [12] use cascaded encoder-
based RNN-T model for frame-level language identification and
use the decisions for 2nd stage of the ASR task. Instead of joint
training, the approach of adding a lightweight classifier compo-
nent on a pre-trained RNN-T-based ASR model has been con-
sidered in [13].

Various self-supervised learning (SSL) models have been
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proposed where the model inherently learns very good language
representations by consuming huge amounts of unlabelled data.
[14] present a wav2vec 2.0 [15] based SSL model trained on
multilingual datasets which outperforms the previous wav2vec
2.0 model [15] on LID tasks. [16] studied the use of wav2vec
representation for LID tasks. [17] propose a very large model
trained on a massive multilingual dataset of 680k hours. The
network is trained in a multi-task fashion and can perform tran-
scription, translation, and language identification.

3. Data description
The challenge dataset is child-directed speech where parents
narrate a picture-book to their children. Audios are recorded at
home using Zoom video-conferencing on internet-enabled per-
sonal electronic devices including laptops, tablets and mobile
phones. Environmental background noise varied widely during
recordings and these recordings were in far-field conditions.

There are 305 recordings from 112 parent-child pairs com-
prising 25 hours of English and 5 hours of Mandarin speech.
There is more than one recording for 103 pairs, with a max-
imum of three recordings per pair. Both English and Man-
darin speech feature Singaporean variety leading to pronunci-
ation that is different from standard English and Mandarin. The
vocabulary and grammar may also be unique. There is fre-
quent code-switching within and between utterances, with the
proportion of Mandarin ranging from 0.85% to 80.7% per utter-
ance.The utterances are mostly short with 20% utterances being
less than 500ms long. The average utterance duration is 1.4
seconds for English and 1.2 seconds for Mandarin.

The recordings are mostly clean with a few exceptions like
beeps, table tapping,and microphone tapping noises. Many
recordings have the parent’s speech followed by the children
crying, babbling or laughing. The parent readings are very ex-
pressive and sometimes even carry song-like rhythms. Quite
a few utterances consist of the child reading or trying to read.
A few utterances have both the parents and the children speak-
ing. Most of the short utterances are, however, single-syllable
sounds like okay, yeah, ohh, hmm, right, etc.

The challenge dataset consists of 2 splits: development and
evaluation, which we shall sometimes refer to as dev and eval
respectively. The development split was provided for assessing
and training the models. The evaluation set labels were hidden
from the participants and this was the set that was used to rank
the submissions on the leaderboards. There are a total of 50270
utterances in the development set and 48785 utterances in the
evaluation set. Both the development and evaluation sets have
a very similar distribution but with no speaker overlap amongst
them.

Table 1: Publicly available datasets used for training

Dataset Language Hours
Librispeech (train-clean-100) English (US) 100
NSC (preselected partition) English (SG) 100

AIShell (preselected partition) Mandarin 200

For closed track training, we use a combination of the pub-
licly available datasets mentioned in Table 1 and the provided
development set. We do not use any data mentioned in Table 1
for open track training and stick to only the provided develop-
ment set.

4. System description for closed track
4.1. Signal domain transformations

• Mel-Filter Banks: Short Time Fourier Transform was per-
formed using 25ms windows and 10ms hops, and then 80
filter banks in the mel scale, ranging from 75Hz to 8000Hz
were used for generating input features.

• SpecAugment: The commonly used spectrogram augmen-
tation scheme is utilized in hopes of improving the perfor-
mance.

• Utterance normalization: After the previous 2 stages, the
utterance is mean-variance normalized on a per utterance
level, independently for every dimension.

During testing, the SpecAugment stage is removed from the
preprocessing steps.

4.2. Model architecture

For the experiments, we use a base ASR model that closely
resembles Conformer-S [18]. The only difference is that the
decoder is replaced with a transformer with 320 hidden di-
mensions. The transcription network consists of 12 conformer
blocks and uses relative positional encoding, while the predic-
tion network has 1 transformer block and uses normal positional
encoding.

4.3. Training

4.3.1. Phase 1

For the initial phase, we train a multilingual ASR network, with
Byte-Pair Encodings as the targets. The only notable difference
here is that before generating any linguistic token, the model
is trained to output the language ID. For example, an English
sentence would effectively be

<SOS> <EN> HELLO WORLD <EOS>

where < SOS > and < EOS > are start-of-sequence and
end-of-sequence tokens respectively. The model is trained us-
ing RNN-T loss. Tokens for text was generate using Byte-Pair
Encoding[19] generated using all the text data from the train set.

For validating the training, we leave out roughly 50% (equal
splits from each dataset) of the training data and train on the
rest. During this stage the development set for the challenge is
not used.

4.3.2. Phase 2

After an ASR model has been trained, the transcription network
is extracted and a single self attention layer is attached on top.
The output of this layer is averaged over the time-steps to pro-
duce a single vector, which is then transformed to 2 dimensions
via a fully connected network. Weighted cross entropy loss
is applied with weights roughly proportional to the inverse of
the number of utterances as weights for each language (Man-
darin=0.8, English=0.2).

During this stage, the development set provided for the
challenge is exclusively used. For estimating the number of
epochs required for convergence, we initially split the dev set
into 50% for training and 50% for validation. The data ratios of
Mandarin and English are maintained in the split.

Once the model has been trained and the number of epochs
required for best convergence is identified using the 50-50 split,
we start again from the trained ASR. If we identify that the 50-
50 train-val split pilot experiment indicated K epochs for con-
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Figure 1: Model architecture used for training the final closed
track system.

vergence, we train a model for K epochs using all of the devel-
opment set. The evaluation set is then inferred using this model.
The overview of the architecture is given in figure 1.

4.4. Approaches

Four approaches were tried for the experiments.
(a) Classifier with DEV only: Training the classifier network

directly using the development set.
(b) Pre-trained ASR finetuned on DEV: Training an ASR

with all except development set, then fine-tuning the ASR
to predict only the language token using only the develop-
ment set.

(c) Pre-trained ASR transfer learned to a classifier with
DEV: Training an ASR with all except development set,
then transfer learning onto the development set using 2 ex-
tra layers.

(d) Ensemble of 2 transfer learned classifiers: An ensemble
of 2 models trained as in approach (c). The probability
predictions are combined using arithmetic mean.

Approach (d) was finalized after testing on the unseen split.

5. System description for open track
5.1. Open track models

This section describes the models tried for the open track. All
the fine-tuned models mentioned in subsequent sections are
fine-tuned on the development dataset. HuggingFace [20] and
PyTorch [21] were used to implement all the open track models
described below.

5.1.1. Whisper-large

For the first 2 networks in the open track, we harness the power-
ful multilingual capabilities of OpenAI’s Whisper model [17].
A pre-trained Whisper-large model initialized with a language
modeling head was chosen as the first network. This is a 32
layer network consisting of 1.55B parameters.

5.1.2. Whisper-base fine-tuned

This network consists of a Whisper-base model followed by
a MLP projection head and finally a classification layer. The
Whisper-Base model is a 6 layer network with 74M parame-

ters. The MLP projection head consists of a fully connected
layer network that projects to a higher dimensional latent space
(size=2048) and then being projecting it back to a lower dimen-
sion (size=256) with ReLU as the non-linearity for both the lay-
ers. Another fully connected layer finally maps to raw logits for
classification.

5.1.3. Wav2vec2-Conformer-large fine-tuned

A Wav2vec2 Conformer is an extension to the original
Wav2vec2 model [15] where the attention-blocks are replaced
by the conformer-blocks introduced in Conformer [18]. This
model contains 24 transformer blocks with model dimension of
1024 and 16 attention heads. A fully connected layer projecting
to 2 dimenisions is added on top of the pre-trained model for
fine-tuning.

5.1.4. Wav2vec2-large-XLSR fine-tuned

The XLSR-Wav2vec2 model was first proposed in [14] and
builds on the conventional Wav2vec2 model with the help of
cross-lingual pre-training. The large model once again consists
of 24 transformer blocks with model dimension of 1024 and 16
attention heads. Similar to the previous network, a fully con-
nected layer is added on top of the pre-trained model for the
classification task.

5.1.5. WavLM-base-plus model fine-tuned

WavLM was a large scale self-supervised pre-training algorithm
introduced in [22] to specifically tackle full-stack downstream
speech tracks. The WavLM-base-plus architecture consists of
12 transformer encoder layers with a hidden state dimension of
768 and 8 attention heads. Keeping in line with the previous 2
networks, a fully connected layer is added on top to perform the
classification.

5.2. Training

The pre-trained Whisper-large (5.1.1) network is utilized for
language classification without the need for any new training.
We directly infer on the evaluation set and report the results.

For the remaining 4 networks, since they are all already
pre-trained, we utilize only the development set provided for
training and evaluation. We partition the development set into 2
splits of 90% and 10% for training and validation respectively.
We utilize stratified sampling to ensure that both splits possess
the same distribution of classes. For pre-processing, we begin
by resampling the speech to 16khz and then compute log mel
filter banks of 80 dimensions which are in turn used as the in-
puts for our network. In addition, for the Wav2vec2-Conformer-
large, Wav2vec2-large-XLSR, and the WavLM-base-plus mod-
els, we truncate/pad audios to a maximum duration of 2 sec-
onds.

All the networks are trained for 10 epochs and the model
with the best validation accuracy is chosen for inference. Adam
[23] is the optimizer of choice for all the training experiments.
Weighted cross entropy with a ratio of 4 : 1 is used in order
to account for the class imbalance. 2e − 5 was chosen as the
learning rate for training the Whisper-base model, whereas in
all the other cases, we resorted to a learning rate of 3e − 5.
The Whisper-base network was trained with a batch size of 16.
Wav2vec2-Conformer-large and WavLM-base-plus both utilize
a batch size of 64, with gradient being accumulated and updated
every 4 steps. Wav2vec2-Conformer-large follows the same
number of steps for gradient accumulation with only the batch
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Table 2: Results for all closed track models. DEV set used is a custom 50% split.

Model Dev Eval
EER (%) BAC (%) EER (%) BAC (%)

Baseline – – 21.7 50.9
Classifier trained with DEV only 21.3 65.9 – –

Pre-trained ASR finetuned on DEV 19.7 51.4 – –
Pre-trained ASR transfer learned to a classifier with DEV 14.7 79.8 14.3 –

Ensemble of 2 transfer leanred classifiers 14.3 79.6 13.9 81.7

Table 3: Results for all open track models. DEV set used is a custom 10% split for all but the last row for the ensemble. Since the
ensemble uses the closed track model, the DEV set chosen is the same 50% split used for closed track.

Model Dev Eval
EER (%) BAC (%) EER (%) BAC (%)

Baseline – – 21.7 50.9
Wav2vec2-Conformer-large fine-tuned 13.1 73.2 – –

Wav2vec2-large-XLSR fine-tuned 13.6 71.2 – –
WavLM-base-plus model fine-tuned 14.4 67.5 – –

Whisper-large 12.8 71.8 12.1 –
Whisper-base fine-tuned 9.3 80.9 11.6 –

Whisper-large + closed track ensemble 10.7 77.4 9.5 78.9

size being reduced to 32. For the final submission to the open
track leaderboard, the probability scores from the pre-trained
Whisper-large model and one of the closed track models are
combined using an arithmetic mean.

6. Results
6.1. Closed track results

Table 2 presents results for all closed track models mentioned
in Section 4.4 . For the closed track, since we train on half of
the development set, the results shown with the development set
indicate performance on the left out validation split The perfor-
mance of the models on evaluation split is shown only for the
models we submitted.

The ensemble model is the winning submission which
topped the leaderboard.

6.2. Open track results

Table 3 showcases results for all open track models. For the
open track, we train on 90% of the development set and the
results displayed below are on the left out validation split of
10%. The performance of the models on evaluation split are
shown only for the models that were submitted.

The Whisper-large + closed track ensemble was the win-
ning submission which topped the leaderboard. Due to the lim-
ited number of submissions allowed, we were unable to try an
ensemble involving the Whisper-base finetuned model but ex-
pect it to perform on par with or better than our winning sub-
mission.

7. Discussion
In the closed track, we observe that pretraining an ASR has a
good impact on the performance. However, when fine-tuning
the ASR model using RNN-T loss to predict a single token,
we don’t observe much performance improvements over chance
accuracy. This could be overcome by modifying the loss to
include weighted loss for RNN-T. The model which is first

trained as an ASR and then transfer learned to be classifier using
weighted cross-entropy performs the best. In our experiments,
we also observed that without providing weights for the loss,
the model converges to a point where the performance is close
to chance accuracy.

The open track models mostly outperform the closed track
models when fine-tuned on only the development set. In self-
supervised pre-trained models, the Wav2vec2-Conformer vari-
ant performs the best, highlighting the effectiveness of con-
former blocks in speech-related tasks. Pre-training on 53 dif-
ferent languages appears to be benefitting the Wav2vec2-XLSR
model when compared to the WavLM model. Whisper mod-
els, owing to the vast amount of multi-lingual training data and
the language identification capabilities, benefit hugely in terms
of EER. Wav2vec and WavLM, pre-trained in a self-supervised
manner, appears to put them at a disadvantage in compari-
son. The fine-tuned Whisper-base outperforms the much larger
Whisper-large (without fine-tune) on both the development and
the evaluation sets. Ensemble approaches significantly improve
the performance in terms of EER as seen from the last row in
Table 3, possibly because of the complementary information
learned by the models.

Similar to [13], we observe that our models perform better
with longer utterances. This might be indicative of the ASR en-
coder’s ability to capture linguistic signatures with longer con-
text, helping the overall performance.

8. Conclusions
This paper presents the challenge winning approaches for both
the open and closed tracks for the MERLion CCS Language
Identification Challenge. We bring together several key ideas
like ASR pre-training, utilization of Whisper networks, ensem-
ble across the open and closed tracks etc. to achieve a relative
EER improvement of 35.9% and 56.2% in the closed and open
tracks respectively over the challenge baseline. We also clearly
demonstrate the improvement that each of our ideas bring forth
and hope that some of them will be made use of in the future for
similar tasks and challenges.
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“Cross-domain adaptation of spoken language identification for
related languages: The curious case of Slavic languages,” in Proc.
INTERSPEECH 2020 – 21st Annual Conference of the Interna-
tional Speech Communication Association, Shanghai, China, Oct.
2020, pp. 477–481.

[11] R. Duroselle, M. Sahidullah, D. Jouvet, and I. Illina, “Modeling
and training strategies for language recognition systems,” in Proc.
INTERSPEECH 2021 – 22nd Annual Conference of the Interna-
tional Speech Communication Association, Brno, Czechia, Sep.
2021, pp. 1494–1498.

[12] C. Zhang, B. Li, T. Sainath, T. Strohman, S. Mavandadi,
S. Chang, and P. Haghani, “Streaming end-to-end multilingual
speech recognition with joint language identification,” in Proc.
INTERSPEECH 2022 – 23rd Annual Conference of the Interna-
tional Speech Communication Association, Incheon, Korea, Sep.
2022, pp. 3223–3227.

[13] Z. Kons, H. Aronowitz, E. Morais, M. Damasceno, H.-K. Kuo,
S. Thomas, and G. Saon, “Extending rnn-t-based speech recogni-
tion systems with emotion and language classification,” in Proc.
INTERSPEECH 2022 – 23rd Annual Conference of the Interna-
tional Speech Communication Association, Incheon, Korea, Sep.
2022, pp. 546–549.

[14] A. Babu, C. Wang, A. Tjandra, K. Lakhotia, Q. Xu, N. Goyal,
K. Singh, P. von Platen, Y. Saraf, J. Pino, A. Baevski, A. Conneau,
and M. Auli, “XLS-R: Self-supervised Cross-lingual Speech Rep-
resentation Learning at Scale,” in Proc. Interspeech 2022, 2022,
pp. 2278–2282.

[15] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, “wav2vec
2.0: A framework for self-supervised learning of speech repre-
sentations,” Advances in neural information processing systems,
vol. 33, pp. 12 449–12 460, 2020.

[16] Z. Fan, M. Li, S. Zhou, and B. Xu, “Exploring wav2vec 2.0 on
speaker verification and language identification,” in Proc. INTER-
SPEECH 2021 – 22nd Annual Conference of the International
Speech Communication Association, Brno, Czechia, Sep. 2021,
pp. 1509–1513.

[17] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and
I. Sutskever, “Robust speech recognition via large-scale weak su-
pervision,” arXiv preprint arXiv:2212.04356, 2022.

[18] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu,
W. Han, S. Wang, Z. Zhang, Y. Wu, and R. Pang, “Conformer:
Convolution-augmented Transformer for Speech Recognition,” in
Proc. Interspeech 2020, 2020, pp. 5036–5040.

[19] R. Sennrich, B. Haddow, and A. Birch, “Neural machine transla-
tion of rare words with subword units,” Association for Computa-
tional Linguistics, vol. 1, 2016.

[20] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer,
P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. Le Scao,
S. Gugger, M. Drame, Q. Lhoest, and A. Rush, “Transformers:
State-of-the-art natural language processing,” in Proceedings of
the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations. Online: Association for
Computational Linguistics, Oct. 2020, pp. 38–45. [Online].
Available: https://aclanthology.org/2020.emnlp-demos.6

[21] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch:
An imperative style, high-performance deep learning library,” Ad-
vances in neural information processing systems, vol. 32, 2019.

[22] S. Chen, C. Wang, Z. Chen, Y. Wu, S. Liu, Z. Chen, J. Li,
N. Kanda, T. Yoshioka, X. Xiao et al., “Wavlm: Large-scale self-
supervised pre-training for full stack speech processing,” IEEE
Journal of Selected Topics in Signal Processing, vol. 16, no. 6,
pp. 1505–1518, 2022.

[23] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” arXiv preprint arXiv:1412.6980, 2014.

4128


