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Abstract

Standard Visual Speech Recognition (VSR) systems directly
process images as input features without any apriori link
between raw pixel data and facial traits. Pixel information is
smartly sieved when facial landmarks are extracted from
pictures and repurposed as graph nodes. Their evolution
through time is thus modeled by a Graph Convolutional
Network. However, with graph-based VSR being in its infancy,
the selection of points and their correlation are still ill-defined
and often bound to aprioristic knowledge and handcrafted
techniques. In this paper, we investigate the graph approach for
VSR and its ability to learn the correlation between points
beyond the mouth region. We also study the different
contributions that each facial region brings to the system
accuracy, proving that more scattered but better connected
graphs can be both computationally light and accurate.

Index Terms: visual speech recognition, graph convolutional
network, point cloud definition

1. Introduction

Machine learning advancements in the last decade turned
challenging everyday life applications into reasonable and
achievable objectives, and the Automatic Speech Recognition
(ASR) community attention has moved increasingly towards
low Signal-to-Noise Ratio scenarios. In this context, with
video becoming more accessible, recent studies [1, 2, 3, 4, 5]
were able to demonstrate the benefits of including visual
content into the classic ASR pipeline. Facial traits can
therefore be considered as speech features to the same extent
Visual Speech Recognition (VSR), the task of transcribing
spoken words by processing only the visual content, is
considered a branch of ASR. Our paper focuses on challenging
the data structure and input features of the relatively recent
VSR pipeline, following previous work involving approaches
like optical flow [6] or graph data structure [7, 8].

Deep learning-based VSR methods rely on decoding the
visual information of the video source, focusing on the mouth
region [1, 2, 3, 4, 5, 9]. The pertaining picture area is often
located, cropped, and aligned using a face landmark detector,
then the sequence is fed to convolutional and/or
attention-based neural networks. This processing pipeline is
allegedly redundant as the pixel information is processed
twice, once to find the landmarks and again by the network in
order to find the visual cues, making the whole process also
ill-suited for embedded applications. Moreover, the
information present in detected landmarks revealing potentially
important face contours is ignored, as those are discarded after
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Figure 1: Graph-based VSR system pipeline: landmark
detection on video frames is applied to extract the point cloud.
Following head pose estimation (red line) and normalization,
the point cloud is processed by a GCN model outputting speech
transcription.

the mouth area is located [1, 2, 3, 4, 9]. Finally, using raw
images as input could be prone to biases such as gender, age,
skin tone, and illumination, reflecting the distribution of
training data [10, 11].

To overcome these issues, an alternative approach is to
build graphs employing the extracted landmarks as a set of
nodes. These graphs contain information well suited to
represent the evolution of facial traits through time and can be
processed by apt Graph Convolutional Networks (GCN) [12].
GCN have proven their efficiency in several applications
[12, 13, 14], and have recently been applied to VSR in tandem
with the standard visual information pipeline [7, 8]. The
system described in [7] relies upon a handcrafted graph derived
from the extracted facial landmarks fed to a Spatial Temporal
GCN [15], while in [8] a set of adjacency matrices is learned to
capture the complex relationship between such points using an
Adaptive Graph Convolutional Network (AGCN) [14]. These
systems rely on the face-alignment detector in [16] or dlib [17]
which extract 68 facial landmarks. The common graph-based
VSR pipeline is exemplified in Figure 1.

However, when using only landmark data for the learning
process, systems fail to match the performance of the standard
approaches. While previous work [18] made use of extra-oral
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pixels of the source image, GCN studies in [7, 8] only focused
on improving the design of the network without challenging the
assumption that only mouth-related data is useful for the task.

In this paper we analyze the benefits of the extra-oral facial
landmarks and prove those points can, perhaps surprisingly,
greatly improve the accuracy of a GCN system, progressively
closing the performance gap with the standard approaches. The
use of point clouds as data also allows each pose to be
normalized with the aid of depth estimation. This produces a
time series of 3-D face contours with a constant orientation,
dimming the side effects of the original picture perspective. In
contrast to pixel data, point clouds are inherently already
sparser but we can yet apply landmark sub-sampling and
observe its effects on performance. Our best configuration is
nevertheless achieved by using the entire point cloud. When
compared to other graph-based VSR systems on the LRW
dataset [1], our approach improves upon the state-of-the-art
accuracy by a 2% absolute margin.

2. Graph-based Visual Speech Recognition
2.1. Point Cloud Definition

Landmark detection is applied to each video frames to extract a
point cloud. In our experiments, the full set of points per frame
consists of 478 extracted landmarks from the detector in [19]
via the MediaPipe framework [20]. This model estimates 3-D
coordinates from the frames.  The extracted landmarks
coordinates are normalized and aligned using the tip of the
nose as a fixed reference point. We denote V' € REXT*N ag
the point cloud representing the input sequence with 1" being
the temporal length, N the number of landmarks, and C' the
number of channels. As depicted in Figure 1, we leverage the
depth of the extracted 3-D landmarks to estimate the head
pose, solving the Perspective-n-Point problem [21]. We then
define two ways of selecting input points. The first is by
location: we decompose the point cloud in Regions Of Interest
(ROIs) which represent different face areas to assess their
contribution to VSR accuracy; their boundaries are detailed in
Figure 3a. The second is by sub-sampling: we observe the
relevance of the point cloud resolution by using fewer
landmarks. We apply sub-sampling either on the entire point
cloud (Figure 3b) or after selecting only the lips ROI. Finding
an automated method of sub-sampling point clouds for VSR is
not straightforward, therefore in our current work the subset
selection task is still performed by hand.

2.2. Graph Neural Network

Standard GCN models require handcrafted graph topologies
defined a priori. It is laborious and sub-optimal to manually
define such a graph from the face point cloud as there is no
obvious connection between pairs of points. Furthermore, the
fixed graph topology lacks the flexibility and ability to model
the multilevel relations contained in different layers. The
Adaptive Graph Convolutional Network (AGCN) proposed in
[14] overcomes these limitations and demonstrates its
efficiency for the graph-based VSR task in [8].

Similarly to the Transformer’s multi-head structure [22],
each AGCN layer is composed of K parallel heads which
encode the point cloud information spatially by learning a set
of Global and Adaptive adjacency matrices. Within each layer
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Figure 2: AGCN layer with a single TCN layer on top.
Orange boxes indicate the learned components, and the @
and ® symbols denote element-wise addition and matrix
multiplication, respectively. Further details in Section 2.2. The
figure is adapted from [14].

and each head k, the Global graph is determined through the
adjacency matrix G € R™V*¥, whose elements are actively
learned during the training process along with other network
parameters. Besides, the Adaptive adjacency matrix
A, € RM*N is computed for each input using the soft
self-attention mechanism to define graph nodes associations
using their similarity. The input feature map
Vin € REmXTXN g first embedded by two separated 1x1
convolutional layers 6, and ¢, in the embedding space
RE*TXN " The embeddings are then reshaped to RN *CeT
and RET*N gpaces, respectively, and multiplied to build the
adjacency matrix of the Adaptive graph.

Thus, the graph convolution operation is defined in
Equation 1:

K
Vout = Z Wk‘/zn(Gk + OéAk)
k

()]

where V€ REutXTXN jg the output feature map of the
spatial graph convolution, W}, is the parameter matrix from the
1x1 projection function wyg, and « is a parameter weighting
the linear combination of the adjacency matrices Gy, and Ay.
We use Temporal Convolutional Network (TCN) [23] layers
with a kernel of size 9 after each of the stacked AGCN layers
to encode the temporal evolution of each node. Multiple
residual connections are also added to the pipeline to ease the
training phase and address the over-smoothing problem [24]. A
supplementary attention mechanism equivalent to the one in
[14] is used to further calibrate the spatial and temporal layers.
The whole block is depicted in Figure 2.

In our setup, the complete architecture of the network is
composed of six stacked AGCN+TCN layers of K = 6 parallel
heads, where all Global adjacency matrices are initialized with
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(a) Regions Of Interest (b) Sub-sampling

Figure 3: (a) details the different face regions. We distinguish
five regions: the lips (in red with 80 points), the jaw (in blue
with 113 points), the nose (in pink with 100 points), the eyes
(in green with 155 points), and the forehead (in with 30
points). (b) shows the application of sub-sampling with a 1/12
ratio. The 40 resulting points are in purple. Note that this figure
should be viewed in color.

the constant value 10~%. The output dimensions of each layer
are 64, 64, 128, 128, 256, and 256. A batch-normalization layer
is added to process the input data. Global average pooling is
applied to the final graph prior to the softmax layer.

The complexity of the graph network follows a quadratic
growth with respect to the number of landmarks, because the
Global adjacency matrices values are part of the learned
parameters. This issue can be mitigated by sub-sampling the
point cloud, which will be discussed in Section 3.3.

3. Experiments and Discussions
3.1. Dataset

Our experiments are conducted on the same dataset as the
referenced graph-based VSR systems [7, 8]. Lip Reading in
the Wild (LRW) [1] is a large and challenging dataset
consisting of more than 1000 utterances of 500 different
English words, spoken by hundreds of different speakers in a
wide diversity of situations. In total, 540k videos are divided
into training (490k), validation (25k) and test (25k) sets. Each
video lasts 1.16 seconds at 25 frames per second. Each word is
surrounded by its sentence context and thus influenced by
co-articulation effects.

To assess the gender neutrality of the proposed algorithm,
we hand-labeled the gender of test samples. Test data is found
to be comprised of approximately 60% men and 40% women.

3.2. Experimental Setup

The setup described in 2.2 is common to all reported
experiments. During the training phase, Adam optimizer [25]
is employed with a batch-size of 32 sequences and parameters
B1 = 0.9, B2 = 0.98, and ¢ = 10™° . Following [22], the
learning rate increases linearly with the first 25000 steps,
reaching a peak value of 0.0003 and then decreases
proportionally to the inverse square root of the step amount.
Each run, the whole network is initialized without any
pre-training and trained for 15 epochs using Cross-Entropy
loss function. On a machine equipped with an Nvidia RTX
3090 GPU and Intel I9 processor, each training takes between
10 and 48 hours depending on the point cloud definition.
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Table 1: An ablation study over ROIs. Accuracy is reported
for the LRW test set, with last column detailing the gap in
accuracy between genders. Top section concerns performances
and complexity when only one ROI is considered; middle
section reports several region combinations, “face” indicating
the combination of all ROIs; bottom section assesses the impact
of point cloud sub-sampling. Further details are described in
Section 2.

ROI #Points #Params ACC(%) Ag(%)
M Lips 80 3.3M 54.4 5.7
M Jaw 113 3.6M 442 55
M Nose 100 3.5M 433 5.5
M Eyes 155 4.0M 40.3 5.7
[ Forehead 30 3.1M 37.0 6.1
Combined ROIs

Face 478 11.7M 62.7 4.5
Lips + Jaw 193 4.6M 60.5 5.2
Lips + Eyes 235 5.2M 60.2 4.6
Lips + Nose 180 4.4M 59.6 5.0
Lips + Forehead 110 3.6M 57.6 5.7
Face w/o Lips 398 9.1M 48.6 6.0
Sub-sampling

Face /6 80 3.3M 61.6 53
Face /12 40 3.1M 60.5 4.6
Face /24 20 3.1M 57.8 53
Lips /2 40 3.1M 53.6 5.0
Lips /4 20 3.1M 53.3 5.1

Since LRW is usually employed in words classification
tasks [1, 2, 7, 8, 9], performance is reported with the accuracy
metric. The measure of the gender bias is obtained through
predictive parity [26] calculating the difference between
gender accuracy values, defined in Equation 2:

AG = Accwomen - ACC’rnen (2)

3.3. Experimental Results

Experimental results presented in Table 1 show the accuracy of
different point cloud ROIs, the combination of the lips ROI
with every other region and the impact of sub-sampling. While
it is expected of the lips and jaw regions to be the most
contributing [8], it is interesting to see that every other ROI is
beneficial to the accuracy. Notably, the eyes and nose regions
are almost as useful as the jaw points despite being not
commonly perceived as correlated to mouth movements. The
complementary aspect of the eyes ROI is noteworthy: it ranks
as penultimate on its own (40.3%) but when combined, it
places as a close second contributor (60.5%). Overall, every
isolated region yields significant accuracy, with the forehead
ROI performing the worst (37%) but nevertheless still
puzzling, given its anatomic location.

It seems no face area is completely devoid of correlation to
mouth movements, and with the training data consisting of
hundreds of speakers, it is safe to assume this is a common
trait. To get a first non-comprehensive insight into this trend,
we crafted a visual representation of the correlation of each
ROI for a 29-frame example. This was achieved by taking the
tip of the nose as origin and calculating the distance with a
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Figure 4: Distance evolution from a selected point of each ROI
with respect to the tip of the nose, over time. The dynamics of
each distance curve are normalized between 0 and 1.

hand-picked point from each ROI, in time. This produced the
line graph shown in Figure 4. Depending on their position
relative to the nose, we observe that regions such as lips and
jaw move in parallel, while others like lips and forehead move
oppositely. The two types of movements represent
simultaneous events and hence denote some correlation.
Probably, both the landmark extractor and anatomic traits
concur to the correlation, although it remains unclear to which
extent. As these remarks stem from initial observations, a
throughout analysis with sounder metrics is left for future
work.

The highest accuracy is nevertheless achieved when using
the entire point cloud: the model reaches its best configuration
with all 478 points yielding an accuracy of 62.7% on the LRW
test set, which is itself an improvement of 2% over the best
graph-based system in [8] (see Table 2 for comparison). This
configuration experiences a drop of 0.8% accuracy when pose
normalization is not applied. The advantage of filtering out the
pose information is especially evident in extremely skewed
poses, in which cases the burden of learning to discard
orientation information is relieved from the network.

Sub-sampling results follow an analog trend, with the
whole face area yielding better results (61.6%) even when
reduced to the same amount of points of the sub-sampled lips
ROI (60.5% versus 53.6%). Indeed, the favorable comparison
still holds when considering the full-resolution lips subset,
showing that 40 or even 20 points scattered over a wider area
can be more valuable than 80 limited to the lips. This
quality-over-quantity principle is also very advantageous when
the network complexity is of crucial importance: notably, the
80-point sub-sampled model in Table 2 surpasses both
state-of-the-art graph-based systems with significantly fewer
parameters. Overall, sub-sampled setups are always in the
order of 3 million parameters, while the only network structure
that manages to surpass the top sub-sampling result comes at a
cost of 8.4 additional million parameters.

Hand-labeling the speaker gender for the test set allowed
for an approximate gender fairness assessment: according to
the bias measure defined in Equation 2 our models yield A¢
scores favoring women, reported in Table 1. We performed this
benchmark with the image-based system in [9] and the same
trend is present, while less pronounced, with a A¢ score of 2%.
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Table 2: Comparison of our system in its most efficient
configurations with the two existing graph-based VSR
approaches and state-of-the-art models of similar complexity.
Accuracy is reported on the test set of the LRW dataset.
*Parameter number unavailable from original source, values
are estimated by re-implementation.

Method Input Type  #Params ACC (%)
Liu et al. [7] Graph 30M* 49.3
Sheng et al. [8]  Point cloud 45M* 60.7
Ours (80 pts.) Point cloud 3.3M 61.6
Qurs (478 pts.)  Point cloud 11.7M 62.7
Maet al. [9] Image 2.9M 79.9
Ma et al. [9] Image 9.3M 85.3

3.4. Limitations and perspective of current approach

Performance-wise all graph-based systems reported in Table 2
are still far from the most competitive image-based
convolutional approaches. Gender neutrality is also not up to
par with such systems, whether the deficiencies are in
landmark detection or in the actual graph structure. While a
given amount of points could possibly solve the VSR task as
well as image-based convolutional systems, the current state of
the art for GCN is still striving for competitive fruition. In
perspective, our current approach manages to slightly surpass
the image-based baseline introduced along with the LRW
dataset in 2016 [1].

There are nevertheless some undeniable advantages in a
graph-based framework: texture information is discarded early
in the pipeline for a compact and better-correlated
representation of facial traits which is, as shown above, prone
to more systematic sub-sampling. Along with the consistent
ROI analysis and related improvement of graph-based state of
the art, standalone graph systems are proving themselves as a
promising alternative approach for VSR.

4. Conclusions and future work

This paper investigated graph-based VSR using estimated face
landmarks as node data. The current work confirms previous
findings and brings additional evidence that every extra-oral
region improves upon the system performance. In particular,
selecting fewer points on facial ROIs can drastically reduce
network complexity and concurrently yield superior
performance to lips-focused setups. Furthermore, we managed
to achieve better accuracy than existing graph-based VSR
methods by exploiting landmarks across the whole face. We
believe that our conclusions will serve as a basis for future
studies. A more in-depth analysis of time correlation between
ROIs is a topic we deem worth investigating in future work. To
further improve the efficiency and explainability of the system,
research into introducing a point cloud tailored sub-sampling
strategy is already underway.
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