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Abstract
In this work, we propose a lightweight online approach to au-
tomatic punctuation restoration (APR), which can be utilized
in speech transcription systems for, e.g., live captioning TV or
radio streams. It uses only text input without prosodic features
and a fine-tuned ELECTRA-Small model with a two-layer clas-
sification head. It allows for restoring question marks, commas,
and periods with a very short inference time and a low latency of
just three words. Our APR scheme is first tuned and compared
to other architectures on a set of manual TV news transcripts.
The resulting system is then compared to another real-time APR
module utilizing a recurrent network and a combination of text
and acoustic features. The test data we use contains automatic
transcripts of radio talks and TV debates; we are also publish-
ing this data. The results show that our APR module performs
better than the above-mentioned system and yields on the two
test sets an average F1 of 71.2% and 69.4%, respectively.
Index Terms: automatic punctuation restoration, automatic
speech recognition, ELECTRA model, streamed data

1. Introduction
In the most recent decade, various automatic speech recogni-
tion (ASR) systems have become parts of our everyday lives.
Their existing applications include voice dictation, live cap-
tioning, virtual assistants, conversational systems, and various
services that enable the transcription of individual recordings
or even streamed audio data. These developments in ASR are
made possible by advanced deep learning methods, namely by
deploying the recent end-to-end (E2E) neural network architec-
tures [1], which have significantly increased ASR accuracy.

However, ASR systems are usually not designed to produce
transcripts with punctuation marks. This is because the data for
training conventional or E2E models are rarely annotated with
punctuation marks. Missing punctuation negatively affects user
experience, especially in the above-mentioned systems for live
captioning [2] or transcription of audio data. In all these appli-
cations, users find it difficult to read or correct a long transcript
without sentence boundaries [3]. Moreover, the absence of
punctuation can degrade the results of other downstream tasks,
e.g., translation or context analysis, which use ASR output and
usually require sentence boundaries to be defined.

To address this issue, ASR systems are often complemented
by an automatic punctuation restoration (APR) module, which
adds selected punctuation marks to the stream of recognized
words. Existing approaches for APR utilize two main types of
features [4]: acoustic (prosodic) [5] and text-based. The meth-
ods of the former type require less training data and are more
robust to ASR errors as well. However, they require training
data annotations on the acoustic level and often yield lower ac-

curacy. In contrast, the latter methods provide more accurate
punctuation marks and can be trained using text data only. Their
disadvantage is higher computing requirements and higher la-
tency related to a larger input context, which may incorporate
future words. Note that textual and acoustic features can also
be combined, such as in [6] or [7].

2. Related work
The APR task is usually solved as a sequence labeling prob-
lem aimed at restoring only the three most frequent punctuation
symbols, i.e., periods (”.”), commas (”,”), and question marks
(”?”). For this purpose, various statistical methods have been
employed, such as maximum entropy models [4, 8] or condi-
tional random fields [9].

Consequently, advancements in deep learning techniques
have shifted the research in this direction with excellent re-
sults. For example, convolutional neural networks and pre-
trained word vectors have been used in [10] for punctuation
prediction in unsegmented transcripts. Other works have uti-
lized recurrent neural networks (RNNs), allowing for sequence-
to-sequence modeling. Among others, unidirectional RNN was
trained in [11] or in [4], and bidirectional RNN with attention
mechanism in [12] or [13]. Transformer-based models have also
been adopted for the APR task, such as in [14]. Significant
progress has been achieved using large pre-trained transformer
language models (LMs), such as BERT [15]. Moreover, excel-
lent results have been reported using the statistical information
encoded in these models, e.g., in [16, 17].

To further improve APR results, ELECTRA model [18], a
recently proposed improvement on BERT, has also been em-
ployed. This architecture has a generator-discriminator struc-
ture allowing for automatic injection of errors into the train-
ing data and subsequent training with a multi-task learning ob-
jective to improve the robustness against ASR errors [19]. A
further attempt to improve the robustness has been proposed
in [20], where the authors have utilized the ELECTRA model
with a disfluency generator and a multi-task discriminator.

This work focuses on the most challenging APR sub-task,
i.e., real-time streaming data processing with low latency. Our
specific use case is live captioning of various TV and radio
(TV/R) broadcasts in the Czech language. The number of ex-
isting papers investigating online APR with regard to latency is
rather limited. For example, the authors in [6] utilize RNN and
rely on a combination of prosodic and textual features. Their ap-
proach has a latency of three words. Another recent work [21]
utilizes decoding over output from a controllable time-delay
transformer model that jointly completes the punctuation pre-
diction and disfluency detection tasks. This method operates
with a latency of 10 words.
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In contrast, our approach utilizes text features only to avoid
the need for training data annotations at the acoustic level while
maintaining as high accuracy as possible. It thus utilizes the re-
cent ELECTRA model, but with a limited size and future input
context, to allow for real-time processing with low computation
demands and a latency of three words.

In an experimental study performed on a development set,
we first investigate individual components of our APR module
and compare its performance to other architectures or existing
systems, including the OpenAI web service, which all utilize
purely textual input. This study is not solely concerned with
accuracy as in most existing works but also considers inference
time and a streaming scenario. After that, we evaluate our ap-
proach with tuned parameters using transcripts created by an
ASR system. We also compare the achieved results to another
real-time APR system combining textual and prosodic features.

3. Proposed APR approach
3.1. Neural network architecture used

The neural network architecture adopted in this work corre-
sponds to the ELECTRA-Small model [18]. Experimental in-
vestigation on the development set in Sec. 4.3 shows that this
model achieves excellent results with a small number of param-
eters and, consequently, low computational requirements.

For the APR task, this model as well as all of the similar
compared architectures must be complemented by a classifica-
tion head to classify each output token into one of the target
classes. We distinguish four classes. The first, denoted by None,
represents a case where no punctuation mark should comple-
ment the input word. The remaining classes represent the three
most common punctuation marks: periods, commas, and ques-
tion marks. The classification head used in this work consists
of two linear layers. The first layer with SELU [22] activation
function takes a vector with a size of 256 as input and provides
a vector with a size of 512 on output. The second layer then
produces a vector of size 4, passed to a softmax function to de-
termine the probability score for each class. We have also tried
the utilization of additional layers or different activation func-
tions, but without any significant improvement in accuracy.

3.2. Training data pre-processing and tokenization

All data used to train the ELECTRA models have been pro-
cessed as follows: First, solely alphabetic characters, digits, and
punctuation marks are preserved, and all other symbols are re-
moved. Second, all capital letters are converted to lowercase.
Finally, the text is split into sentences and tokenized using the
SentencePiece tokenizer [23] operating with a dictionary con-
taining 30,522 tokens, as recommended in [18].

3.3. Fine-tuning

The fine-tuning of the general model must be performed to-
gether with the newly added classification layers. The data used
for this purpose is processed as follows. First, random numbers
of sentences (from 1 to 10) are concatenated into long strings
corresponding to the size of the input layer of the model. The
strings with similar word counts are then organized into batches
and the data in each batch is normalized and tokenized as de-
scribed in Sec. 3.2. After that, a vector containing a number be-
tween 0 and 3 is created for each token. Its value represents the
class of the punctuation, that follows the given token in the input
text. Finally, all tokenized punctuation marks are removed.

3.4. Method of streamed data processing

In an offline processing mode, input text can be divided into
blocks, and punctuation restoration can be performed for each
block individually. This segmentation can also be performed
with an overlay, so that words on block boundaries are pro-
cessed within an adequate context.

However, this block-processing scheme is not suitable for
streamed environments. In the latter, the punctuation marks
must be restored for every input word with the lowest possi-
ble latency, i.e., with only a limited future context. Therefore,
the context of every input word is usually formed by a long se-
quence of preceding words and only several following words,
with the maximum total length corresponding to the number of
input tokens. An experimental comparison of this streamed way
of processing with the per-block regime is presented in Sec. 4.4.

3.5. Class weighting

The number of tokens in each class in our training data is sig-
nificantly imbalanced, as the occurrence frequency of the None
class is much higher than for periods, commas, or even question
marks. To eliminate this problem, it is necessary to determine
the weight for each class, which allows us to achieve an op-
timal balance between precision and recall [?]. The resulting
weights, determined using the dataset as described in Sec. 4.2,
are as follows: 1.0 for the None class, 5.0 for question marks,
2.0 for periods, and 1.5 for commas. They are used to multiply
the output probabilities of the model during inference.

4. Investigation on the development set
4.1. Development dataset and evaluation metrics

Our development set consists of manually corrected transcripts
of Czech TV/R news. This data contains 258,608 tokens in
total, of which the class None comprises 225,443 tokens, the
question mark class 595 tokens, the period class 17,103 tokens,
and the comma class 15,467 tokens. The metrics chosen to eval-
uate the results from an accuracy point of view are precision (P),
recall (R), and F1. Since high scores are to be expected for class
None, these metrics are computed for tokens corresponding to
the three punctuation marks only.

4.2. Training data and parameters used for training

The corpus used to train the ELECTRA models contains 23
GB of Czech texts (i.e., 5 billion tokens), including newspa-
per articles, manually corrected automatic transcripts of vari-
ous Czech TV/R broadcasts, diploma theses, and legal texts and
judgments. To obtain the best possible accuracy in the target do-
main, the data used for the fine-tuning comprises an additional
1.5 GB of manually corrected transcripts (i.e., 335 million to-
kens). Another 100 MB of these transcripts is used to find the
weights for individual punctuation classes.

We perform the fine-tuning using the AdamW optimizer in
three epochs with a learning rate (LR) of 0.00003 for all in-
vestigated models and an LR of 0.0001 for the classification
head. Starting with epoch two, the LR is decreased to 95% of
the previous LR every 10,000 batches. The training of ELEC-
TRA models from scratch follows a recipe presented in [18].

4.3. Comparison of various architectures

In the first experiment, several neural network architectures are
compared with respect to the accuracy, model size, and infer-
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Table 1: Comparison of performance of various architectures in the offline block-processing mode.

architecture P [%] R [%] F1 [%] # params inf. time [ms]

LSTM + BiLSTM + linear layers 51.5 34.5 41.3 8.5M 3
ELECTRA-Small trained from scratch 75.3 76.8 76.0 13.6M 11
ELECTRA-Base trained from scratch 75.3 75.5 75.4 109M 60

pre-trained ELECTRA-Small from [24] 73.4 78.7 76.0 13.6M 11
pre-trained BERT from [25] 75.4 74.9 75.2 110M 61

GPT-3-based web service in an edit mode 80.5 54.6 65.1 - -

ence time. This time is calculated using a single thread of
one core of an Intel i7 9700K processor and corresponds to
the time needed to perform one forward pass using the given
architecture. The experiment has been performed in the above-
described block-processing mode without any overlays.

The first architecture consists of LSTM, BiLSTM and GRU
layers as proposed in1. Here, the first layer corresponds to an
embedding layer with a size equal to the number of tokens in the
dictionary. This layer is followed by the LSTM layer and then
by alternating Bi-LSTM and GRU layers, gradually reducing
the number of tokens to a final number of four. This model, as
well as the following two ELECTRA models (second and third
row in Table 1), has been trained from scratch and subsequently
fine-tuned. The fourth model is again an ELECTRA-Small one,
but this time trained by authors of [24] using a much larger
corpus compiled from 253 GB of Czech text data. The next
model is the BERT model pre-trained using 36 GB of Czech text
data [25]. These last two mentioned models have been comple-
mented with the two-layer classification head and fine-tuned on
our data. Note that the class weighting has been applied to all
of the above-described architectures as specified in Sec. 3.5.

Finally, the last investigated approach corresponds to the
general-purpose web service of OpenAI, which utilizes the
GPT-3 model [26]. This service has been evaluated in an edit
mode, which allows us to insert content into the existing text
rather than just complete the existing text.2 In our particular use
case, every data block passed to this service has been comple-
mented with the following instruction: “Add punctuation to the
text. Use periods, commas, and question marks.”

The results in Table 1 clearly show that all of the transform-
ers outperform the LSTM/GRU-based model by a large margin.
For example, ELECTRA-Small model, trained from scratch,
yields an F1 of 76%, while the LSTM/GRU-based model has
an F1 of only 41.3%. The value of 76% is the same as that
valid for the ELECTRA-Small model pre-trained using 253 GB
of text data. The use of this much larger corpus thus does not
bring any further improvement in the accuracy of this model.

It is also evident that both ELECTRA-Small models yield
slightly higher F1 values than the pre-trained BERT model
(F1 of 75.2%), which has a much higher number of param-
eters (110M versus 13.6M) and thus also a higher inference
time (61 ms versus 11 ms). The same also holds for the big-
ger ELECTRA-Base model. However, its slightly worse per-
formance compared to the small-sized variants may have been
caused by the smaller size of our training corpus.

Our results also show that the general GPT-3 based web ser-
vice, currently of great interest and increasingly used for various
tasks, performs significantly worse for APR purposes, i.e., with
F1 of just 65.1%, than the specialized models.

1https://community.wolfram.com/groups/-/m/t/1379001
2https://openai.com/blog/gpt-3-edit-insert/

Table 2: Detailed results [%] achieved by the ELECTRA-Small
model for individual punctuation marks.

P [%] R [%] F1 [%]

question mark 46.2 38.6 42.0
period 76.9 70.9 73.8
comma 74.6 84.7 79.2

weighted average 75.3 76.8 76.0

It should also be noted that the inference time of 11 ms
of the best-performing ELECTRA-Small model is sufficient for
real-time processing. The reason is that the average speaking
rate for many European languages is reported to be between 100
and 200 words per minute (i.e., 1.7-3.3 words per second), de-
pending on the speaking style and word length. These rates cor-
respond to the maximum possible inference times from 590 ms
to 300 ms. Czech, a morphologically rich inflectional language,
has an above-average word length, so a word-per-minute rate on
the lower boundary is expected.

Finally, Table 2 shows the detailed performance of the
ELECTRA-Small model trained from scratch for individual
punctuation marks. The highest F1 of 79.2% is achieved for
commas, a slightly lower value of 73.8% for periods, and ques-
tion marks are restored with a low F1 value of 42%. These
differences show that restoring a question mark’s position in
Czech is almost twice as challenging than restoring a comma or
a period.

4.4. Performance in the streaming mode

The next performed experiment investigates the performance of
the ELECTRA-Small model trained from scratch in the stream-
ing mode of processing as described in Sec. 3.4. In contrast to
the previous experiments, the APR task is thus not carried out
for individual text blocks. The maximum allowed left input con-
text size is 100 words, and the maximum allowed right context
size varies from 1 to 100 words. This gives the total maximum
context size of 200 words corresponding to approximately 512
input tokens (i.e., the size of the input layer of the ELECTRA-
Small model). Note that the sizes actually used depend on each
word’s position in the input text; the left context of a word at
the beginning, or the right context of a word at the end, can be
shorter than the maximum set values.

The achieved results (see Table 4) show that the right con-
text of just one word is insufficient from the accuracy point of
view – the corresponding F1 value is just 70.2%. On the con-
trary, three or more words yield F1 values just by 1% smaller
than those achieved in the block-processing mode (the last row
of Table 4), and 10 or more words are sufficient without any
loss of accuracy.
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Table 3: Detailed comparison of the proposed APR module in online mode to the APR module from [6] on outputs from an ASR system.

read radio talks spontaneous TV debates

proposed APR module APR module from [6] proposed APR module APR module from [6]

P [%] R [%] F1 [%] P [%] R [%] F1 [%] P [%] R [%] F1 [%] P [%] R [%] F1 [%]
question mk 31.7 59.4 41.4 40.0 7.5 12.7 48.5 39.9 43.8 75.8 22.8 35.0

period 82.6 66.7 73.8 69.6 54.0 60.8 67.5 35.7 46.7 68.8 58.4 63.2
comma 60.2 82.3 69.5 61.7 66.8 64.1 75.8 84.1 79.7 83.3 72.7 77.6

average 68.7 73.8 71.2 65.2 59.4 62.1 73.2 65.9 69.4 78.2 66.0 71.6

one class 80.7 88.3 84.3 77.5 69.8 73.4 93.1 85.3 89.0 92.2 75.9 83.3

Table 4: Results [%] of the proposed APR module in the stream-
ing mode for different max. sizes of left and right input context.

max. left cont. max. right cont. P R F1

100 1 73.3 67.4 70.2
100 2 75.0 72.5 73.7
100 3 75.3 74.2 74.7
100 4 75.2 75.1 75.1
100 5 75.5 75.5 75.5
100 10 76.0 76.0 76.0
100 100 75.6 73.7 74.6

block-processing with no overlay 75.3 76.8 76.0

5. Results for streamed ASR transcripts
In our last experiment, we compare the results of the best per-
forming ELECTRA-Small model trained from scratch to a ref-
erence system – a real-time APR module for Czech from [6],
which is based on RNN with LSTM and utilizes word em-
beddings, prosodic (mainly temporal) features, and information
about silence extracted from the speech signal. The latency of
both approaches is three words.

This comparison is performed on a test set compiled from
recordings and corresponding automatic transcripts with manu-
ally added punctuation. The set contains 10 radio talks on cur-
rent world events (read or prepared speech) and 5 TV political
debates (spontaneous speech). The former data contains 31,932
words, 53 question marks, 2,113 periods, and 1,954 commas;
the latter 39,087 words, 289 question marks, 2,724 periods, and
4,868 commas. We make all these transcripts publicly avail-
able,3 including the corresponding recordings and annotations.
We have created them using an ASR system for live captioning
TV/R streams. It utilizes a modified RNN-transducer with state-
less prediction network [27] trained with the aid of the Icefall
toolkit4 on more than 15k hours of Czech recordings. It has a la-
tency of around one second and yields a word error rate (WER)
of 3.9% on radio talks and a WER of 5.4% on TV debates.

All achieved results are summarized in Table 3. We can
see that our APR module, operating in streaming mode with
the maximum left and right context of 100 words and 3 words,
respectively, has F1 values on radio talks higher by a large mar-
gin than the values valid for the reference APR module. This
holds for all three individual punctuation marks, averaged F1
values, and F1 values calculated by merging all three punctu-
ation classes into one class (the last row in Table 3). We can

3https://owncloud.cesnet.cz/index.php/s/fHqtWwZ5G9V5pPN
4https://github.com/k2-fsa/icefall

also see that our F1 value of 84.3% for a one-class scenario is
much higher than the averaged F1 value of 71.2% calculated
over all three classes. This observation holds for both systems
and datasets, and the big difference between these values shows
to what degree it is easier to determine where a punctuation
mark should be than to decide precisely which one it should be.
Note that the one class scenario corresponds to the identification
of Sentence-Like Units (SU) as proposed in [3, 28].

The results on the second set show a small decrease in av-
eraged F1 value for our APR module: the achieved value of
69.4% is slightly lower than 71.6% yielded by the reference sys-
tem. The reason is that spontaneous TV debates contain large
portions of long-lasting single-speaker utterances. These are
often very complex sentences with many conjunctions, where
even manual annotation of commas and periods is ambiguous.
It is thus difficult to automatically determine whether a period
or a comma should be placed after each sub-sentence without
the associated acoustic information. Our approach achieves an
F1 value of just 46.7% for periods. However, it outperforms by
a large margin the reference system in the one-class scenario.
This means that the proposed APR module can, in transcripts of
TV debates, detect more correct positions for the addition of a
punctuation mark. It also achieves a higher accuracy in restor-
ing question marks and commas in this data type.

6. Conclusions
We have proposed a lightweight approach to the streamed
APR, which relies on the ELECTRA-Small model and operates
purely over a text input with a latency of just three words. It is
therefore suitable for online scenarios, where it performs with
almost the same accuracy as in the block-processing regime.
Our results suggest that a) low-frequency question marks are
much harder to restore than commas and b) the performance for
periods is mixed since their detection is accurate in transcripts
of read speech but very difficult in spontaneous data, such as
TV debates containing many complex long sentences. This sce-
nario also represents the only case where our approach has been
slightly outperformed by an APR system combining textual and
prosodic features. However, utilizing purely textual data is sig-
nificantly less demanding from a data preparation point of view.
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