
The MALACH Corpus: Results with End-to-End Architectures and
Pretraining

Michael Picheny1,Qin Yang2,Daiheng Zhang2,Lining Zhang2

1NYU Courant-Computer Science and Center for Data Science, USA
2NYU Center for Data Science, USA

map22@nyu.edu,qy692@nyu.edu,dz2266@nyu.edu,lz2332@nyu.edu

Abstract
The MALACH corpus contains approximately 375 hours of
Holocaust survivor testimonies along with transcripts (for ap-
proximately half the data) and audio. It is an extremely difficult
corpus for speech recognition, encompassing accented, emo-
tional speech, in many cases from elderly survivors. Neverthe-
less, significant progress has been made on speech recognition
on MALACH with WERs now typically hovering at a 20% level
for hybrid speech recognition systems. The purpose of this pa-
per is to examine if recent developments in end-to-end archi-
tectures and pretraining with self-supervision continue to drive
down performance as they do on popular read corpora such as
Librispeech. We also experiment with leveraging the large frac-
tion of unlabeled corpus data by extracting pseudolabels pro-
duced from previously trained systems. It is found that the best
system - a fine-tuned wav2vec2 system trained on labeled and
pseudolabeled data - achieves a WER of 13.5%, a huge gain in
performance.
Index Terms: speech recognition, human-computer interac-
tion, computational paralinguistics

1. Introduction
The USC-SFI MALACH Interviews and Transcripts English
corpus [1] is a 375-Hour subset of a very large archive of Holo-
caust testimonies collected by the Survivors of the Shoah Vi-
sual History Foundation [2]. It contains accented and emotional
speech, in many cases from elderly survivors, and contains a
large number of non-English named entities, such as names and
places. Recognition of this data was originally thought to be an
impossible task, but by 2019, the word error rate (WER) had
been driven down to approximately 21.7% using LSTM hybrid
models [3].

The importance of this corpus is that it is not an artifi-
cial task; it contains real, difficult audio data of deep historical
interest that would not be accessible without expensive man-
ual transcription. The goal is to obtain good enough WERs
to enable downstream NLP tasks important for understanding,
such as Entity Detection, Document Segmentation, and Seg-
ment Categorization [4]. It is unclear if a WER of 21.7% is
adequate. Early work on MALACH [4] suggested that different
NLP tasks require different thresholds of WERs to reach usable
levels of performance, but the study, while comprehensive, was
done on a much older technology base both for recognition and
NLP, and nothing like it has been done since. Anecdotal ev-
idence reported in papers on closed captioning [5, 6] suggest
that WERs below 10% are required for readability. It is there-
fore important to continue to track if recent techniques in speech
recognition can further drive down the WER on MALACH.
This paper examines WER impact with such recent techniques

as transformer-based end-to-end architectures (e.g., [7, 8]) and
leveraging large pretrained models based on massive amounts
of unlabelled data (e.g., [9, 10]), either by leveraging such mod-
els directly, or by fine-tuning them. Most published results have
tended to be on artificial tasks such as Librispeech [11], or pri-
vate internal product-targeted databases. It cannot be blindly
assumed that equivalent performance improvements will accrue
for data in the ”wild” such as MALACH without verification.

A secondary issue to be addressed is that only part of the
original MALACH speech corpus was released in a form suit-
able for speech recognition. Some fully transcribed interviews
were omitted, and a large fraction of speech was only par-
tially transcribed. This paper also describes attempts to process
and leverage the additional training and test data suitable for
speech recognition purposes. A set of experiments demonstrat-
ing the value of incorporating such previously unlabelled data
to achieve additional improvements on this still-difficult corpus
is also described and confirmed on both old and new MALACH
test data.

The rest of the paper is broken up as follows. Section 2
describes previous and related work. Section 3 explains work
done to recover additional data from the original corpus release,
Section 4 describes the various recognition systems tested and
the results from each system, Section 5 describes experiments
on pseudo-labels derived from the unlabeled data, and Section 6
discusses the results along with suggesting future work.

2. Previous and Related Work
In 2019 a version of the MALACH English corpus was re-
leased in a form suitable for experiments in speech recognition.
[12]. The basic training data set includes 176 hours of manually
transcribed speech, along with a 1.5 hour ”minitest” that went
through multiple correction passes to correct transcription er-
rors. Note that the first release of the training data contained
many utterances with blank transcriptions; when eliminated,
153 hours of audio containing speech was recovered. The best
result, a WER of 21.7% [3], was obtained using a hybrid LSTM
acoustic model rescored with a LSTM-based LM.

Since then, there have been numerous improvements made
to general speech recognition performance. No attempt will be
made to provide a comprehensive review; this paper will focus
on reasonably current architectures embodied in various acces-
sible open-source systems.

ESPNET [13, 14] is a toolkit that provides implementa-
tions of current architectures such as transformer and conformer
attention-based encoder-decoder systems, and a conformer-
based RNN-T. Huggingface [15] provides a large set of fine-
tunable pretrained models. One of the more popular method-
ologies is wav2vec2[16] in which a representation is pretrained
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on a large quantity of unlabelled data and then fine-tuned to
produce very good results on a new corpus. There has been re-
cent work applying wav2vec2 methodologies to a MALACH
Czech corpus with promising results[17]. Whisper [10] is a
large conformer-based system trained on an enormous quantity
of semi-supervised data. All of these systems provide strong
performance when trained on a large corpus; unfortunately it is
not easy to compare results across systems because of differ-
ences in scoring methodologies, amount and types of training
data, and the types of data augmentation applied. One interest-
ing set of comparisons have been made across these architec-
tures on a set of 8 public domain speech recognition tasks [18].
The systems with the best performance seemed to be Whisper
and a Conformer-based RNN-T.

In terms of dealing with unlabeled data and significant
numbers of named entities with many OOVs, early work on
MALACH [19] demonstrated a roughly 20% Word Error Rate
Reduction (WERR) using a word-fragment-based system along
with a posterior-based confidence selection scheme involving
600 hours of unsupervised MALACH data (unfortunately not
made available publicly). There have been many studies gener-
ally demonstrating the value of unlabelled data in speech recog-
nition. A good recent article containing multiple references on
the use of unlabelled data by creating artificially labeled data
(”pseudo-labels”, also known as ”self-training”, or ”student-
teacher training”) is given by [20]. The technique will be em-
ployed in Section 5 to demonstrate additional speech recogni-
tion improvements on MALACH.

3. New Data Extraction
As mentioned above, the original speech recognition MALACH
release comprised of approximately 155 hours (153 hours of
transcribed speech and 1.5 hours of minitest data) of data cre-
ated during the original NSF MALACH program. The original
MALACH speech corpus release contains significantly more
speech data, both transcribed and unlabelled. To increase the
value of the resource to the community, some effort was made
to extract and process the remaining data to increase the amount
of training and testing data.

The original MALACH data was recorded on a set of digital
audio tapes. Each tape held approximately 30 minutes of inter-
view data. The original LDC data distribution consisted of a set
of MP2 and XML files. Each MP2 file was paired with an XML
file and corresponded to a digital tape (i.e., a segment of the
interview). The interviewee and interviewer were captured on
separate audio channels using two different microphones, but
there was often considerable cross-talk across the channels be-
cause of proximity. In the original processing of the data for
speech recognition, the interviewee and interviewer channels
were manually chosen. In this new round of data extraction, we
merely summed the channels for convenience.

The XML files contained the transcriptions. Speaker turns
were manually annotated, as well as long pauses inside a
speaker turn. For the additional data, the long pauses were used
to segment each speaker turn into smaller segments to make it
easier to process the data to build speech recognition systems.
Speaker overlap was also annotated; any segment containing
speaker overlap was discarded. The large number of unfamiliar
foreign words and named entities presented challenges for the
transcribers. All such entities were prefixed with an ’@’. Some-
times they were correctly transcribed; sometimes not, but for
ease of processing the ’@’ was just stripped off and whatever
spelling was provided was accepted. The net effect was to pro-

duce another 18 hours of transcribed data for training, 3 hours
of new transcribed test data, and 150 hours of unlabelled audio
data. The unlabeled data was then processed by the Kaldi Voice
Activity Detection (VAD) component1 to segment the data into
usable training length utterances for speech recognition. This
component uses a simple energy based VAD algorithm and pro-
duces a set of speech segments. Note that the resultant segments
tend to be much longer than the manually segmented data in the
MALACH speech recognition release (average of 3 sec. vs. 9
sec.)

4. Recognition Systems
An End-to-End ASR model trained from scratch on the rela-
tively small MALACH corpus may not be able to learn a rep-
resentation that produces improved performance relative to ex-
isting results. Therefore, we tried multiple approaches. First,
we built a number of standalone speech recognition systems
based on transformer and transducer architectures using only
MALACH data. Second, we examined recognition perfor-
mance on the recently released Whisper system, trained on
massive amounts of semi-supervised data. Last, we fine-tuned
a wav2vec2 system which leverages a large pre-existing cor-
pus of unlabelled data. We tried fine tuning on both the base
MALACH data and also by augmenting this data with pseudo-
labeled data from the base MALACH data. Again, to be clear,
we opportunistically employed open-source systems to give us
some sense about the relative merits and ease of use of the var-
ious systems.

4.1. Scoring

The NIST SCTK toolkit2 was used for scoring the WER across
all systems. To be consistent with prior MALACH work[3], a
GLM (global mapping rule) file was utilized. This GLM file
mapped numbers into spellings, expanded certain abbreviations
into a spoken form, did not score filled pauses, and homoge-
nized alternative spellings. To handle the outputs of E2E sys-
tems, the GLM file had to be expanded from its earlier release
as part of the MALACH corpus[12]; the new version will be re-
leased along with the planned release of the additional metadata
(it did not affect earlier results that were scored with the original
GLM).

4.2. Standalone End-to-End Architectures

ESPNET [14] is a speech processing toolkit that implements
a large number of architectures for various speech process-
ing tasks. In particular, ESPNET provides implementations
and training and evaluation recipes for three currently popular
end-to-end speech recognition architectures: Attention-based
Encoder-Decoder Transformer (T-AED), AED conformer (C-
AED), and a conformer-based RNN-T (RNN-T). Each training
recipe3 was used as provided including the system architecture
and hyperparameters. Each architecture was trained on the orig-
inal MALACH training data; 4 hours of the training data were
held out for validation, and the minitest data was used for eval-
uation. The training recipes all employed the Adam optimizer
and the numel batch type. Table 1 contains the results along
with the provided hyperparameters.

When compared to previous results (21.7%[3]) some
relative improvements were obtained for all systems; the
conformer-based RNN-T seems to have somewhat worse per-

1https://github.com/kaldi-asr/kaldi/blob/
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Table 1: WERs and Hyperparameters for different ESPNET Ar-
chitectures.

Model learning batch warm
Arch WER(%) rate epochs bins up

T-AED 19.9 .0030 75 14M 25K
C-AED 19.6 .0025 50 35M 40K
RNN-T 21.4 .0015 100 20M 25K

formance than the AED, at least for the configurations used.

4.3. Whisper

The Whisper system (Section 2) reports very strong perfor-
mance across a variety of tasks; it therefore serves as another
useful comparison point for MALACH. The Whisper system
was used to transcribe the minitest data. The main problem
that was encountered was that the output text from Whisper is
normalized, whereas the reference text used to determine WER
was not. Code had to be written to reverse the text normaliza-
tion produced by Whisper. In the case of MALACH the main
issues dealt with numbers and abbreviations. The model used
was the Whisper ”medium” model. After the de-normalization,
the resultant WER from Whisper was 18.0%. Note that no fine
tuning was attempted for the Whisper model, so this is a very
impressive result.

4.4. Wav2vec2 Systems

All systems were fine tuned using as a base model
the ”wav2vec2-large-960h-lv60-self” model, which is the
wav2vec2 model trained on 960 hours of Librispeech and 60K
hours of Librilight data.

4.4.1. Hyperparameter Adjustment

As mentioned in Section 2, wav2vec2 produces representations
that can be easily fine-tuned on new data. Wav2vec2 is trained
by predicting speech units for masked parts of the audio. In
the huggingface implementation that supports fine-tuning, the
wav2vec representations can be fine-tuned using Connectionist
Temporal Classification (CTC).

Preliminary experiments revealed that the fine-tuning pro-
cess required some adjustment of the original training hyper-
parameters to ensure that training consistently converged to an
optimum associated with a good word error rate, especially as
the amount of fine-tuning data was increased. After a number of
fruitless attempts attempts to tune the hyperparameters via grid
search, an entry in a support forum[21] was found with a much
better set of hyperparameters. It was also found that running
considerably fewer epochs was both faster and did not seem to
compromise results. Default and best values can be found in
Table 2.

4.4.2. Fine-Tuning Results

We varied the amount of training data from 15.3 hours to 153.1
hours. It was also found that with the standard per user com-
putational setups in our cluster relatively easily available (up

master/egs/wsj/s5/steps/compute_vad_decision.sh
2https://github.com/usnistgov/SCTK, version 2.4.12
3https://github.com/espnet/espnet/tree/

master/egs2/ami/asr1

Table 2: Default and Improved Fine-Tuning Hyper-parameters

Description Default Improved

learning rate 1e-4 4e-5
weight decay 5e-3 3e-2

warmup 1000 500
epochs 30 3

to 400 GB of memory; 4 RTX6000 or VT100 GPUS; 48 core
Lenovo 670 CPU), we encountered various memory issues for
the larger configurations, sometimes due to GPU limitations and
sometimes due to the size of the training data. These were re-
solved by increasing the amount of memory and also by running
on 3 GPUs while reducing the batch size from 32 to 10 for each
GPU; such configurations typically took 2-3 days to train.

Table 3 contains the results with varying amounts of data.
Data was selected randomly from the training set of 153.1
hours.

Table 3: WER after fine-tuning wav2vec2 model vs. amount of
speech

Data WER

15.3 hours 18.2%
38.3 hours 17.0%
76.5 hours 16.7%
153.1 hours 15.9%

Note that the 15.9% WER in particular is quite a good result
for MALACH.

4.5. Results using a Language Model

The above configuration leverages the CTC algorithm for fine-
tuning[16], which does not require an external language model
or dictionary to yield acceptable audio transcriptions. However,
as we can see from Figure 1, the predicted transcription can
sound correct, but can often be spelled incorrectly. For exam-
ple, the ”christmaus” vs. ”christmas” and ”rose beef” vs. ”roast
beef”. In a traditional word-based speech recognition system,
there is no concept of spelling errors, and common phrases
such as ”roast beef” are rarely mistaken even with simple bi-
gram language models. In the E2E literature, there are two ap-

Figure 1: Predicted vs. Ground-truth Transcriptions Using
Fine-tuned wav2vec2

proaches to mitigating the problem. For example, the language
model can be learned together with the acoustic model. In the
RNN-T Conformer (Section 4.2) an RNN Transducer architec-
ture is used where a language model is learned end-to-end along
with a powerful acoustic model. NVIDIA has recently released
an RNN-T model trained on 24K hours of publicly available
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speech4 with strong performance that can be fine-tuned, but we
did not have enough time to investigate before paper submis-
sion.

Another technique is to integrate a language model dur-
ing the inference process. With that being said, we can train
an acoustic model on some speech data, and another language
model (e.g., n-gram) on some text in the same language as the
speech data. Then during evaluation, the language model sup-
ports the acoustic model in predicting the transcribed words via
beam search. Recent enhancements were made to the hugging-
face implementation to include a word-based LM in the final
search. The procedure described in [22] was used. A 3-gram
LM was trained on the MALACH training transcripts. The fine-
tuned model used was the one built using all the training data.
It was found that an lm weight of .5 produced the best perfor-
mance - a WER of 14.1%, relative to the no-LM performance
of 15.9%.

5. Use of Pseudo-labeled Data
Approximately half of the released MALACH data was never
transcribed. Can this unlabeled data be leveraged to further im-
prove recognition performance? Experiments were conducted
to test this hypothesis using a three-stage training methodology.
In Stage one, the wav2vec2 model was fine tuned on transcribed
data. Stage two enriches the size and diversity of the training
samples by generating high-quality pseudo-labels for the unla-
beled speech utilizing the model fine-tuned from the previous
stage. In stage 3, the baseline model is re-fine-tuned on the
joint corpus consisting of originally transcribed samples and the
pseudo-labeled samples produced from stage two.

Initial experiments were trained on a small subset of the
data (1.5 hours) to allow for rapid experiment turnover, as a
proof of concept. Table 4 displays Word Error Rate (WER) re-
sults on the test set. The baseline WER is 21.1%. Note that this
figure, even when fine-tuned on such a small amount of data,
is still better than the previous state-of-the-art WER (21.7%)
on the MALACH corpus. Then, pseudo-labels were produced
by decoding using the 1.5 hour fine tuned model on approxi-
mately 10 minutes of unlabeled speech. These pseudo-labels
were merged with the 1.5 hour fine tuning set and the model
was fine-tuned again, resulting in a 20.6% WER (Table 4).

Table 4: Pseudo-Labeling WERs using small data subset

Training Size (Hrs) WER(%)

Original Pseudo

1.53 - 21.1%
1.53 0.153 20.6%

Buoyed by these initial results, we decided to try incor-
porating unlabelled data on a much larger scale. We used the
model fine-tuned on all the training data to produce pseudo-
labels on all the unlabeled data using two different configura-
tions: one without an LM, and the other, using the 3-gram LM
described in Section 4.5. We then decoded the test data with
and without a language model. The results are shown in Table
5.

4https://catalog.ngc.nvidia.com/orgs/nvidia/
teams/nemo/models/stt_en_conformer_transducer_
xlarge

Table 5: Pseudo-Labeling WERs using all the unlabeled data.

Training No LM WER(%) LM WER(%)

Baseline 15.9 14.1
LM 15.4 14.5
No LM 15.4 13.5

As can be seen, improvements relative to baseline are seen
when pseudo-labels are produced with or without an LM and
decoded without using an LM. However, when using an LM to
decode, it seems to be substantially better to NOT use an LM to
produce pseudo-labels; and actually, performance is degraded
when an LM is used both to produce pseudo-labels and for de-
coding.

Finally, as a additional test, we also used the new test data
described in Section 3 to obtain a set of results5.The new test
set is a factor of two larger than the minitest, but reference tran-
scripts were obtained by taking the manual transcriptions ver-
batim, without another round (or rounds) of cleaning. There-
fore, there are potentially some errors remaining in the refer-
ence transcripts. The results are shown in Table 6.

Table 6: Pseudo-Labeling WERs on new test data.

Training No LM WER(%) LM WER(%)

Baseline 15.3 14.6
LM 15.0 15.1
No LM 15.2 14.1

The results on the new test data are consistent with the
minitest data although perhaps less pronounced.

6. Discussion and Future Work
The best results on the old and new test data (13.5% and 14.1%)
are certainly remarkable numbers relative to those obtained just
a few years ago, and may no longer be a barrier to downstream
NLP processing. It seems clear that pretraining on enormous
amounts of data significantly improved speech recognition per-
formance on the MALACH corpus. Note also that out of the
box, the Whisper system also had excellent performance with a
18.0% WER.

A casual error analysis of the remaining errors suggests that
there are still opportunities for transcript cleanup; that some-
times the data is over-segmented making it very hard to rec-
ognize some words without more LM context, there are still
many errors on foreign named entities, and that sometimes, the
talker’s accent is so heavy that even skilled transcribers would
have difficulty. Although early work on MALACH[4] did not
find any clear effect due to other variables, such as background
noise or age, the high WER operating point may have masked
such effects so they may be worth revisiting.

Work to be done in the future includes fine-tuning on Whis-
per and other large pretrained systems; resegmenting the data
to achieve larger lm contexts; and experimenting with rescoring
n-best hypotheses using large language models. We also plan
to release the new data in a speech recognition friendly form by
paper publication time.

5The data only became available close to paper deadline or more
comparisons would have been made
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[17] J. Lehečka, J. V. Psutka, and J. Psutka, “Transformer-based auto-
matic speech recognition of formal and colloquial czech in malach
project,” in Text, Speech, and Dialogue: 25th International Con-
ference, TSD 2022, Brno, Czech Republic, September 6–9, 2022,
Proceedings. Springer, 2022, pp. 301–312.

[18] S. Gandhi, P. von Platen, and A. M. Rush, “Esb: A benchmark
for multi-domain end-to-end speech recognition,” 2022. [Online].
Available: https://arxiv.org/abs/2210.13352

[19] B. Ramabhadran, “Exploiting large quantities of spontaneous
speech for unsupervised training of acoustic models,” in
INTERSPEECH 2005 - Eurospeech, 9th European Conference
on Speech Communication and Technology, Lisbon, Portugal,
September 4-8, 2005. ISCA, 2005, pp. 1617–1620. [Online].
Available: http://www.isca-speech.org/archive/interspeech 2005/
i05 1617.html

[20] J. Kahn, A. Lee, and A. Hannun, “Self-training for end-to-
end speech recognition,” in ICASSP 2020 - 2020 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2020, pp. 7084–7088.

[21] “Hugging face forums,” https://discuss.huggingface.co/
t/wav2vec2-fix-growing-training-and-validation-loss
-after-few-epochs/8757/6, accessed: 2022-11-01.

[22] “Boosting wav2vec2 with n-grams in huggingface trans-
formers,” https://huggingface.co/blog/wav2vec2-with-ngram, ac-
cessed: 2022-12-20.

5101


