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Abstract
With the increasing prevalence of Alzheimer’s Disease (AD)
worldwide, it is essential to develop non-invasive methods to
monitor the progression of the disease. Speech and language
analyses are suitable for detecting the cognitive impairment of
AD patients; thus, by analyzing changes in speech patterns and
language use, researchers can develop methods to monitor AD
remotely. In this paper, we investigated several speech and lan-
guage techniques commonly used for the automatic detection of
AD. Furthermore, we considered speech recordings of 448 pa-
tients in three different languages: Spanish (57), German (205),
and English (186). Cross-lingual analysis was carried out us-
ing two classification approaches: (1) training/testing in one or
more languages and (2) training in one language and testing in
another. We obtained unweighted average recall values of up to
83% to classify AD using the first classification approach and
up to 70% with the second.
Index Terms: Pathological Speech Processing, Alzheimer’s
Disease, Dementia, Deep Learning, Cross-lingual Analysis

1. Introduction
Alzheimer’s Disease (AD) is a common form of dementia and
the most prevalent neurodegenerative disorder. It is character-
ized by changes in brain tissue and a reduction in the neuro-
transmitter acetylcholine, which can have detrimental effects
on memory, language, comprehension, and behavior, leading
to significant impairments in language and communication [1].
This global trend of demographic aging reflects advances in
healthcare, resulting in people living longer and healthier lives.
As a result, there is an increasing proportion of older individu-
als worldwide. While dementia primarily affects older adults,
there is a growing recognition of cases that begin before age
65 [2]. It is often caused by genetic mutations, for instance,
the PSEN1-E280A or “Paisa mutation” which includes Early-
Onset Alzheimer’s (EOA), typically diagnosed at a mean age of
49 years [3]. For this reason, it is important to develop speech
technology for the detection and monitoring of the disease that
in the future can lead to an early diagnosis.

1.1. Related work

Previous research has investigated the use of automatic speech
and language analysis to diagnose and assess AD. Tradition-
ally, prosodic measures in dementia research have focused on
temporal factors, intensity, voice quality, voice periods, and
variation in fundamental frequency (F 0). In addition to these
features, other acoustic features such as formant frequencies,
Mel-Frequency Cepstral Coefficients (MFCCs), and Energy
distributed in the Bark scale (BBE) can provide contextual-
ized interpretations of the acoustic information. More recently,

researchers have explored using neural embeddings, such as
Wav2Vec, x-vector, and i-vectors, to assess AD, aiming to cap-
ture relevant information about the speaker in a condensed for-
mat [4, 5, 6, 7].

Most studies use English datasets, such as the Pitt Corpus
from the Dementia Bank, comprised solely of native Ameri-
can English speakers. As a result, numerous studies have used
this corpus to investigate AD. Although significant research has
been conducted using this dataset, including two Interspeech
and one ICASSP Challenge, only some studies have used non-
English data [8, 9, 10, 6, 11, 12]. This represents a considerable
gap in the field, which could lead to global inequity in dementia
research. For instance, the Hungarian MCI-mAD database [13],
Mandarin Lu corpus [14], and a Chilean-Spanish AD [14] cor-
pus has been used in studies that have reported accuracies of up
to 86%.

Cross-lingual studies have a significant gap in dementia re-
search, as they can lead to disparities between different stud-
ies. A transfer learning strategy using English (Pitt corpus)
and Spanish (Chilean-Spanish) data achieved good performance
in [15]. The authors reported Unweighted Average Recalls
(UAR) of up to 85% while combining the corpora seems more
challenging (UAR=66%). In [16], a study based on classical
speech and language features explored the feasibility of cross-
linguistic AD detection in English and German. The authors
reported that separate training in each corpus achieved good
performance (German UAR=86%, English UAR=77%). The
authors reported results slightly above chance training and test-
ing in different languages.

1.2. Contribution of this work

In this paper, we investigated the suitability of speech and lan-
guage analyses for the automatic detection of dementia in AD
using a cross-lingual approach with three different languages:
English (EN), Spanish (ES), and German (DE). Cross-lingual
analysis was carried out using two classification approaches:
(1) training/testing in one or more languages and (2) training
in one language and testing in another. For this, we considered
speech recordings of 205 German native speakers, 186 English
native speakers, and 57 Colombian native speakers. We used
Support Vector Machine (SVM) and Artificial Neural Network
(ANN) for classification. Acoustic and linguistic features were
considered for modeling the signals. In the case of acoustic,
we computed duration, rhythm, pleasure arousal dominance,
and Wav2Vec embeddings. For linguistics, we computed word
embeddings and grammar features. We also proposed a fusion
strategy for different feature sets using the ANN, which consists
of concatenating the features as “channels” in the input tensor,
resulting in better results than using an early fusion strategy.
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2. Data
We used three datasets containing speech recordings and tran-
scripts in English, Spanish, and German for AD detection. The
datasets included semi-spontaneous speech recordings [17] and
transcripts from picture description tasks. Furthermore, the in-
terviewer’s speech was removed from the recordings based on
the timestamps provided in the datasets.

2.1. English Dataset

For this study, a subset of the Pitt Corpus [18] was used, com-
prising a total of 186 native English speakers. The group with
Alzheimer’s Disease (AD) was age- and sex-matched with the
Healthy Control (HC) group. The speech task consisted of
recordings [17] and manual transcripts describing the “cookie
theft picture” [19].

2.2. Spanish Dataset

The dataset [20] includes recordings of spontaneous speech and
transliterations from 57 Spanish speakers from Colombia, com-
prising 8 EOA patients with Mild Dementia (MD), 23 EOA
patients with Mild Cognitive Impairment (MCI), and 27 HC
subjects. The patients are genetic carriers of the “Paisa mu-
tation” [3]. The participants were asked to describe the cookie
theft picture, as in the English dataset. The transcripts were
created manually.

2.3. German Dataset

This corpus comprises 205 native German speakers (109 fe-
male, 96 men), which was recorded in a multi-site study us-
ing a uniform digital tablet platform and was provided by the
PARLO Institute for Research and Teaching in Speech Ther-
apy1. The dataset consists of 83 patients with MCI, 83 with
dementia, and 59 HC subjects. Unlike the English and Span-
ish dataset, the participants describe a different picture, which
is one of the tasks in this dataset. For this dataset, the transcrip-
tions were automatically generated using Whisper [21].

Patients with MCI, MD, and dementia were grouped to-
gether for the class AD. Additional demographic information
from the three datasets is displayed in Table 1.

Table 1: Demographic information of the subjects for each lan-
guage

AD Patients
F/M

HC Subjects
F/M

English Corpus
Number of Subjects 33/60 37/56
Age [years] 66.5 (7.8)/70.0 (7.3) 64.5 (8.1)/63.3 (8.0)

Spanish Corpus
Number of Subjects 14/15 15/12
Age [years] 48.2 (5.7)/50.7 (7.1) 49.5 (7.7)/ 53.2 (7.1)

German Corpus
Number of Subjects 83/64 26/32
Age [years] 70.1 (8.4)/70.6 (8.2) 68.6 (8.5)/ 72.6 (7.8)
Values are expressed as mean (standard deviation). F: female. M: male.
Age is given in years.

1https://www.parlo-institut.de/

3. Methods
3.1. Linguistic Features

Grammar Based: We considered the features previously used
for automatic AD detection [22]. They aimed at modeling the
sentence structuring capabilities of AD patients, who exhibit
deficits in using nouns and verbs and difficulties using verbs
when arguments are involved [23]. Our goal is to evaluate their
sentence structuring capabilities by counting the elements in-
volved in structuring sentences, as well as the number of gram-
matical elements, such as verbs and nouns, found in their tran-
scripts. We considered Part-Of-Speech (POS) counts, namely
the Noun to Verb Ratio (NVR), Noun Ratio (NR), Pronoun
Ratio (PR), and Subordinated Coordinated Conjunctions Ratio
(SCCR). These POS counts assess the syntactical abilities of
AD patients in structuring sentences. This set of features also
includes the Flesch reading score, Flesch-Kincaid grade level,
propositional density, and content density of the transcript [24].

Word Embeddings: This study considers word embeddings,
specifically Bidirectional Encoder Representations from Trans-
formers (BERT) [25]. These methods form direct connections
between individual elements through a process called attention
and use transfer learning. BERT uses various attention mecha-
nisms known as heads, which function simultaneously and cap-
ture a broader range of relationships between words through
multi-head attention. The model is trained using transfer learn-
ing, where it is initially trained on two unsupervised tasks.
The first task involves Masked Language Modeling (MLM),
where the system predicts missing words (masked) in a sen-
tence. The second task is Next Sentence Prediction (NSP),
where the model predicts if a sentence follows another. The
last layer (768 units) is taken as the word-embedding represen-
tation, and the mean of overall word-embeddings is computed
for the classification task. The model was trained with the Wi-
kicorpus data from 102 languages for BERT-Base. The source
code is also available online2 [26].

3.2. Acoustic Features

Duration: Previous studies on AD also used these features
and achieved satisfactory results [11]. The feature set comprises
duration-based descriptors that were obtained using an energy-
based Voice Activity Detection (VAD) algorithm, which iden-
tifies the speech and pause segments. The descriptors include
the count of pauses and speech segments per second, the ratio
of speech segments to pauses, and six functionals (mean, stan-
dard deviation, kurtosis, skewness, minimum, and maximum)
that characterize the duration of pauses and speech segments.

Rhythm: We used the metrics proposed in [27] and [28]
to model timing information extracted from vowels and con-
sonants. Three main descriptors are considered: (1) the raw
and normalized Pairwise Variability Index (rPVI and nPVI,
respectively) to measure the duration variability of successive
vowel and consonant intervals, (2) the Global Proportions of In-
tervals (GPI) to measure the vowels produced per second, and
(3) the standard deviation of the vowel/consonant (dGPI) dura-
tion intervals. To detect the consonants and vowels, we trained
three phoneme recognizers in Spanish, German, and English.
The model was implemented using recurrent neural networks
with LSTM cells. Regardless of the language, the network ar-

2https://github.com/PauPerezT/WEBERT
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chitecture consists of two convolution layers to process Mel-
spectrograms (50×64) with ReLU activation functions, two
max-pooling layers, and dropout. The feature maps are con-
catenated to form the sequence of feature vectors processed by
two stacked bidirectional LSTMs with 512 hidden units. Then,
a sigmoid activation function is used to predict the sequence
of phonemes. For English, the network was trained with the
TIMIT corpus [29]; for German, we used Verbmobil [30]; and
for Spanish, we used the TEDx Spanish Corpus 3.

Pleasure Arousal Dominance (PAD): We proposed these fea-
tures in a previous study addressing the automatic detection of
depression detection in Parkinson’s disease [31, 11]. It con-
sists of a pre-trained deep neural network designed to extract
emotional information based on three dimensions: (1) valence,
which represents the pleasantness or unpleasantness of an emo-
tion; (2) arousal, which represents the level of activation or agi-
tation; and (3) dominance, which represents the level of control
or influence of an individual over a situation [32]. Three mod-
els were trained on the IEMOCAP database [33], addressing
three binary-classification problems: active vs. passive arousal,
positive vs. negative valence, and strong vs. weak dominance.
The model takes a 3D-multi-channel log-magnitude Mel spec-
trogram as input, with each dimension formed by a sequence
of 500 ms and three different resolution windows. It combines
CNN and GRU to model different articulation and prosody in-
formation aspects. The final linear layer consists of 2 units,
which use a sigmoid activation function to obtain the posterior
probabilities and independently observe each dimension’s con-
tribution. Four functionals are computed across the sequences
to form a 24-dimensional static vector. The source code is avail-
able online4.

Acoustic Embeddings: These embeddings are generated us-
ing the Wav2Vec 2.0 model, which employs self-supervised
learning methods to learn representations from raw speech sig-
nals. The model consists of three main components: feature
extraction, a context network, and a linear projection to the out-
put. The input consists of 16 kHz raw audio split into 25 ms
chunks with 10 ms frame shift. The feature extraction part uses
temporal convolutions to convert speech information into a la-
tent space representation. Similar to BERT, audio segments are
masked and quantized for self-supervised training, and a con-
textualized representation is obtained through a Transformer-
based approach with contrastive learning. This method has
been fine-tuned for emotion recognition, speaker verification,
and speech disorder assessment tasks. We focus on the pre-
trained Wav2Vec XLSR-53 and experiment with different lay-
ers, specifically the latent layer, the twelve layers within the at-
tention mechanism, and the last layer. Our results indicate that
the model’s first, ninth, and twelfth layers were the most effec-
tive for our experiments. We compute the mean value over the
output chunks for each layer, resulting in a fixed vector of 768
elements per speaker and layer.

3.3. Automatic Detection of AD

Two different classifiers were considered for comparison pur-
poses: an SVM and an ANN. The classifiers were optimized
following a nested 4-fold cross-validation strategy. The per-
formance of the classifiers was measured in terms of UAR,

3http://www.ciempiess.org/downloads
4https://github.com/PauPerezT/PADS

sensitivity, and specificity. In the case of the SVM, the opti-
mal parameters were found through a grid search, where C ∈
{10−4, 10−3, ..., 104} and γ ∈ {10−4, 10−3, ..., 104}. For the
ANN, we proposed a light fusion architecture to combine the
different feature sets and reduce the risk of overfitting due to
the size of the datasets. Figure 1 shows the proposed model.
For the network input, we concatenate the feature sets as “chan-
nels” in a tensor of dimensions 1 × 768 × C, where C is the
number of feature set combinations and 768 is the maximum
number of features in one set, which in our case are from the
word embeddings. Additionally, we use padding on the feature

Figure 1: Architecture of the ANN proposed to perform classifi-
cation and feature fusion.

sets with less than 768 elements. The 1-Dimensional convolu-
tional layer aims to fuse the feature sets at an intermediate level
(middle fusion), followed by a pooling layer with an ELU acti-
vation, a linear layer of 256 units, and the classification layer.

4. Experiments and Results
We performed experiments taking into account all the combina-
tions between languages with the aim of observing if it is fea-
sible to combine the different corpora from different language
sources. We used two classification approaches for language-
dependent and cross-lingual analyses: (1) training/testing in one
or more languages and (2) training in one language and testing
in another.

Table 2: Best classification results obtained for each language
and possible combinations. UAR: Unweighted Average Recall.
Sens: Sensitivity. Spe: Specificity.

Language Feature Fusion Classifier UAR Sens Spe
WV1 + WV12 SVM 70 58 82EN BERT + WV1 ANN 82 89 74
PAD + Rhythm SVM 75 79 70ES Gr + WV12 ANN 78 76 80
Rhythm + WV1 + WV9 +
WV12 SVM 65 55 74DE
BERT + WV1 + WV9 ANN 70 79 62
PAD + Dur + WV1 +
WV12 + WV9 SVM 72 64 79

EN+ES BERT + Rhythm + Gr +
WV12 ANN 78 70 86

Rhythm SVM 55 44 66
EN+DE BERT + PAD + Rhythm +

WV1 + WV9 ANN 67 65 70

PAD + WV9 SVM 66 65 67
ES+DE Dur + PAD + Rhythm +

WV1 + WV9 ANN 68 72 64

Rhythm SVM 55 45 65EN + ES + DE Rhythm + WV1 + WV9 ANN 73 81 66
WVi: Wav2Vec i-th layer of the transformer. PAD: Pleasure Arousal Dominance posteriors.
Dur: Duration features. Gr: Grammar features.

The results for the first classification approach are shown
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Figure 2: Feature importance for each language: English (left), Spanish (middle), and German (right).

in Table 2, where only the best combinations of features are re-
ported. In particular, we achieved an UAR of 82% in English,
78% in Spanish, and 70% in German. When combining two
languages, the best result was obtained when training English
and Spanish together (UAR= 78%). For the three languages, the
classification performance was 73%, which is not an improve-
ment on the other languages due to the German speakers. Re-
garding the linguistic and acoustic feature sets, we performed a
word cloud analysis to visualize the most important features re-
sulting in the best classification performance. The word clouds
are shown in Figure 2.

The most frequent features across the three languages are
related to acoustic information, particularly the rhythm-based
features, which are used to measure the variability in the du-
ration of consecutive vowels (and consonants). For each lan-
guage, other important features are: for English, the acoustic
embeddings (the first, ninth, and twelve layers from Wav2Vec)
and word embeddings (BERT); for Spanish, our emotional em-
beddings; and for German, a combination of duration features,
acoustic, word, and emotional embeddings. Table 3 shows the
classification results obtained when the classifiers were trained
with one language and tested with another. The performance

Table 3: Best classification results obtained while training in
one language and testing in another. UAR: Unweighted Aver-
age Recall. Sens: Sensitivity. Spe: Specificity.

Train Test Feature Fusion Classifier UAR Sens Spe
BERT+WV1 SVM 60 34 85

ES PAD+Dur+Rhythm+
WV1+WV9 ANN 65 70 59

PAD+Rhythm SVM 55 45 66EN
DE PAD+Rhythm ANN 57 26 88

ES
EN

PAD+Dur+WV9+
WV12 SVM 67 68 67

WV1 ANN 64 74 54

DE
Dur+Rhythm+WV1+
WV12 SVM 56 27 84

BERT+WV9 ANN 59 50 67
PAD+Dur+WV1+
WV9+WV12 SVM 62 32 92EN
Dur+Rhythm ANN 64 69 60
WV12 SVM 56 31 81DE

ES Dur+Rhythm ANN 70 78 62
WVi: Wav2Vec i-th layer of the transformer. PAD: Pleasure Arousal Dominance
posteriors. Dur: Duration features. Gr: Grammar features.

of the classifiers is considerably lower than those presented in
Table 2. We obtained comparable results when we trained an
ANN in German and tested it in Spanish, which shows that
features like Rhythm and Dur-based are “transferable” when
another language is also included in the training. These re-
sults are expected if we consider that rhythm features exhibit
language-dependent patterns. For instance, the vocalic vari-
ability in Spanish (measured with the PVI) has been shown to
be lower than in German [27] due to the language structure,

e.g., the Spanish language does not differentiate between long
or short vowels, but German and English do.

5. Discussion and Conclusion
In this paper, we investigated the suitability of speech and lan-
guage analyses for detecting AD automatically. For this, we
considered speech recordings in Spanish, English, and Ger-
man, which we modeled with several combinations of features.
Based on the analysis made in a previous study from last year’s
Interspeech [15], multilingual word embeddings are influenced
by language-specific characteristics (English and Spanish), in
consequence, this paper aims to assess the transferability of fea-
tures between languages when trained in one and tested in an-
other, contrary to relying on transfer learning techniques.

The classification task was performed using two train-
ing/test approaches: (1) training and testing in the same lan-
guage or combination of languages and (2) training in one lan-
guage and testing in another. The results obtained with the
first approach showed that the best classification results were
obtained when automatic detection of AD was performed for
each language. Overall, German speakers were the most diffi-
cult to classify, and combining them with other languages did
not improve the results. This might be due to the mismatch be-
tween the speech task performed by the Spanish/English speak-
ers (cookie theft picture description) and the German speakers
(picture description other than cookie theft). One limitation is
the age difference between the participants in other languages
compared to Spanish. Another problem is the fact that MCI is
considered to belong to the class AD. Most of the studies use a
Mini-mental State Examination (MMSE) result of ≤ 24 as an
indicator of AD. Yet, it could also be MCI patients. In future
work, we will look at a 3-class problem for classifying between
HC, MCI, and AD.

Regarding the combination of features, the rhythm was the
most relevant feature set for classifying AD in each language;
however, the results obtained with the second training approach
showed that the information provided by the features is not
easily transferable across languages. Some features, such as
rhythm-based, can differentiate between patients and controls
in individual languages; however, it is necessary to introduce
information about other languages during training, so the model
learns to “focus” on differences due to the pathology.

In the future, we will explore individual features in detail.
We expect a variation of the F 0 to be transferable, while e.g.,
variation in vowels commonly is more difficult.
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I. Hoffmann, “Identifying Mild Cognitive Impairment and mild
Alzheimer’s disease based on spontaneous speech using ASR and
linguistic features,” Computer Speech & Language, vol. 53, pp.
181–197, 2019.

[14] Y.-W. Chien, S.-Y. Hong, W.-T. Cheah, L.-H. Yao, Y.-L. Chang,
and L.-C. Fu, “An automatic assessment system for Alzheimer’s
disease based on speech using feature sequence generator and re-
current neural network,” Scientific Reports, vol. 9, no. 1, pp. 1–10,
2019.
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