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Abstract
We present HyperSeg, a hyperdimensional computing (HDC)
approach to unsupervised dialogue topic segmentation. HDC is
a class of vector symbolic architectures that leverages the prob-
abilistic orthogonality of randomly drawn vectors at extremely
high dimensions (typically over 10, 000). HDC generates rich
token representations through its low-cost initialization of many
unrelated vectors. This is especially beneficial in topic seg-
mentation, which often operates as a resource-constrained pre-
processing step for downstream transcript understanding tasks.
HyperSeg outperforms the current state-of-the-art in 4 out of
5 segmentation benchmarks – even when baselines are given
partial access to the ground truth – and is 10 times faster on
average. We show that HyperSeg also improves downstream
summarization accuracy. With HyperSeg, we demonstrate the
viability of HDC in a major language task. We open-source
HyperSeg to provide a strong baseline for unsupervised topic
segmentation.1

Index Terms: topic segmentation, hyperdimensional comput-
ing, summarization

1. Introduction
Automatic speech recognition (ASR) is often paired with down-
stream natural language processing (NLP) tasks for informa-
tion extraction. Appropriately segmenting ASR transcripts to
conform to the limited input length of downstream models is a
practical and important consideration for such hybrid systems.
Conventional NLP models cannot process whole meeting tran-
scripts (which typically include hundreds or thousands of ut-
terances spanning several hours) in a single inference context.
Such physical constraints necessitate effective methods to di-
vide transcripts into coherent segments before passing them on
to downstream models.

Much research has focused on unsupervised approaches for
topic segmentation due to the scarcity of labeled datasets with
diverse domain and lexical coverage. Because segmentation is
performed at the utterance level, dominant approaches to unsu-
pervised topic segmentation use neural utterance embeddings.
We find two problems with this line of research: neural ut-
terance embeddings are very brittle to the domain in question
[1, 2], and existing unsupervised topic segmentation methods
cannot determine segment counts on their own. Even state-of-
the-art (SOTA) systems rely on carefully tuned hyperparame-
ters, without which the systems offer lower segmentation accu-
racy than random segmentation.

This work exploits hyperdimensional computing (HDC) to
create a robust topic segmentation system resilient to domain

1https://github.com/seongminp/hdseg

Figure 1: Utterance embeddings from Wiki-727k, created with
SentenceBERT2 (left) and HyperSeg (right). The color of each
dot represents its topic. Representations were projected with t-
SNE [4].

and hyperparameter change. HDC leverages vector interactions
in high-dimensional spaces to create scalable, aggregated rep-
resentations. We initialize each token in an utterance as a ran-
dom 10, 000-dimensional vector and bind those token repre-
sentations to portray a complete utterance. HDC’s aptitude for
single-pass learning makes it inherently robust to domain shift
[3]. Compared to neural approaches, HDC produces more rep-
resentative utterance embeddings in a fraction of the processing
time (Figure 1). We summarize our contributions as follows:

1. We introduce HyperSeg, the first framework to use HDC for
topic segmentation.

2. HyperSeg outperforms the best unsupervised transcript seg-
mentation baselines across multiple domains, even when
baselines are provided with optimal hyperparameters and par-
tial ground truth.

3. HyperSeg is an order of magnitude faster than neural base-
lines, at an average of 10 times per utterance. HyperSeg
achieves such speedup while running entirely on the CPU.

4. HyperSeg increases downstream summarization accuracy
compared to baseline and naive segmentation schemes.

2. Related work
2.1. Hyperdimensional computing

The concentration of measure [7] is a phenomenon that oc-
curs among a set of randomly initialized n-dimensional vec-
tors where – given sufficiently large n – the cosine similarity
between each vector is heavily concentrated around 0. Such a

2https://huggingface.co/sentence-transformers/all-mpnet-base-v2.
SentenceBERT [5] performed better than more recent SimSCE [6].
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set of vectors are said to be pseudo-orthogonal to each other. In
other words, a random vector drawn in high-enough dimensions
will be probabilistically dissimilar to those previously drawn.
Hyperdimensional computing (HDC) [8] is a class of vector
symbolic architectures that leverages such convenient orthog-
onality in high-dimensional space. HDC designates a random
large dimensional vector (with n >= 10, 000) to represent
concepts of varying granularity, such as a single text token, a
sentence, or an entity class.

HDC occupies the middle ground between symbolic artifi-
cial intelligence (e.g. agent-based modeling) and distributional
artificial intelligence (e.g. neural networks), amending the
shortcomings of both. In symbolic architectures, one-hot entity
representations render entity similarity calculations discontinu-
ous and thus non-interpolable [9, 10]. At the opposite end of the
spectrum, distributional semantics uses vector representations
for natural interpolation and loss propagation, but cannot con-
solidate learned vectors into order- and dimension-preserving
sequences (known as the “binding problem” [11]). HDC retains
the benefits of distributed vector representations while offering
a solution to the binding problem by tapping into the aforemen-
tioned pseudo-orthogonality of vectors at high dimensions. At
extremely high vector spaces, the pseudo-orthogonality of ran-
domly realized vectors converges to exact orthogonality. The
architecture also comes with the benefit of extremely fast and
parallelizable representation construction.

HDC has seen adoption in time-sensitive real-time systems
[9], often in conjunction with artificial neural networks. The
framework has found its place in text processing as well [12],
boasting high accuracy and extremely fast processing time. For
the first time, we apply HDC’s representational power to tran-
script segmentation. We find that utterance embeddings created
with HDC are semantically more coherent than ones created
with the best sentence embedding neural networks.

2.2. Unsupervised topic segmentation

SOTA unsupervised topic segmentation algorithms first con-
struct vector representations of each transcript utterance, to
be delivered to downstream sequence segmentation algorithms.
BERTSeg [13] and CohereSeg [14] use SentenceBERT [5] em-
beddings to represent each utterance. BERTSeg uses off-the-
shelf pre-trained BERT [15] models, while CohereSeg further
trains BERT with utterance-pair coherence loss. Semantic ut-
terance vectors are fed to the TextTiling algorithm [16], which
is a linear sequence segmentation scheme that determines topic
segments by vector distance. GraphSeg [17] uses an alternative
segmentation scheme by constructing a semantic graph with
each utterance as a node. Utterance communities are deter-
mined in the semantic graph, and maximal cliques in the graph
are designated as transcript segments.

Depending on the transcript domain, however, the represen-
tational capability of semantic embeddings can falter. Each ut-
terance embedding contains an unexplainable juxtaposition of
semantic and lexical concepts [1, 18]. We find existing tran-
script segmentation algorithms are brittle in both representa-
tion construction and downstream segmentation. Such brittle-
ness makes SOTA baselines extremely sensitive to hyperparam-
eters, often resulting in lower accuracy than random segmen-
tation. We show that replacing the utterance embedding step
with HDC produces more topic-aware utterance vectors across
multiple datasets. Leveraging such representational advantages,
HyperSeg eliminates all hyperparameters while outperforming
previous SOTA, even when optimal hyperparameters (includ-

Figure 2: Normalized similarity scores from Doc2Dial. Utter-
ance boundaries with similarity under an adaptively determined
threshold are considered topic boundaries.

ing partial ground truth, such as the total segment count of a
transcript) are provided to baselines. HyperSeg also operates an
order of magnitude faster than neural baselines, which are often
unfit for resource-constrained preprocessing tasks such as topic
segmentation.

Table 1: Summary of benchmark datasets. ”Utts” and ”Utt len”
stand for mean utterance count and mean utterance length.

Name Domain Utts Utt len Segments

AMI Meeting 364.10 36.88 6.82
ICSI Meeting 879.51 50.84 16.12

Doc2Dial Customer service 30.13 77.57 1.42
VT-SSum Lecture 306.10 82.72 33.87
Wiki-727k General 46.43 125.36 4.66

3. Segmentation with HyperSeg
3.1. Constructing utterance embeddings

We follow [12] and create utterance embeddings by binding
multiple hyperdimensional word embeddings. For every word
in an transcript that is not a stopword, we randomly initialize a
10, 000-dimensional bipolar vector w:

w = (x0, . . . , x9,999), (1)
where x ∼ IID{−1, 1}.

Each element in the word embedding is either -1 or 1, and same
words are mapped to the same embedding. High dimension-
ality ensures that each word embedding is roughly orthogonal
to every other word embedding (“blessing of dimensionality”
[19]).

To represent a single utterance, we use permutation binding
[9, 12] to consolidate all word embeddings in the utterance into
a single hyperdimensional vector, also of dimension 10, 000.
To generate an utterance vector u, we first encode the position
of each constituent word vector wi by right-shifting (Π) l −
i − 1 times. l is the utterance word count and i is the zero-
based word index within u. The final utterance embedding is
the component-wise majority vote (M ) of all of its position-
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Table 2: Transcript segmentation results. HyperSeg performs best even without the ground-truth segment count provided to baselines.
”BS” stands for boundary similarity. Results are averaged over 5 runs with different random seeds. Higher is better for both metrics.

AMI ICSI Doc2Dial VT-SSum Wiki-727k

Model F1 BS F1 BS F1 BS F1 BS F1 BS

Random 5.19 2.75 5.09 2.64 10.76 6.89 23.91 13.30 28.37 16.60
GraphSeg [17] 4.22 2.22 2.75 1.43 10.06 5.35 2.28 1.18 21.09 12.26
BERTSeg [13] 4.43 2.36 1.58 0.81 2.95 1.56 8.84 4.75 17.91 10.23
CohereSeg [14] 8.77 4.63 7.79 4.03 16.58 10.09 25.98 14.57 28.41 17.60
HyperSeg (ours) 9.41 4.93 6.94 3.55 18.49 10.54 27.35 15.15 29.82 17.45

encoded word vectors (wpos
i ):

wpos
i = Πl−i−1(wi) (2)

u = M(wpos
0 ,wpos

1 , ...wpos
l−1) (3)

Topic segmentation does not require extracting constituent word
embeddings after obtaining utterance embeddings. Even so,
the reversibility of right shifts and position-wise multiplication
guarantees the ability to recover each word embedding should
the need arise.

3.2. Transcript segmentation

We calculate the boundary similarity score (S) for every neigh-
boring utterance pair ui and ui+1:

S =
ui · ui+1

|ui||ui+1|
(4)

Each boundary score is the cosine similarity between sur-
rounding utterance embeddings. An utterance boundary index j
has to satisfy two conditions to be selected as a topic boundary:
its similarity score sj has to be a local minimum, and sj has to
be lower than an automatically determined threshold T .

Since the desired number of total segments is unknown,
selecting a similarity threshold for topic boundaries is a non-
trivial process. Baselines rely on hyperparameters to determine
the total segment count, which often hinders segmentation ac-
curacy at test time. HyperSeg automatically calculates the sim-
ilarity cutoff threshold T as one standard deviation of boundary
scores (σs) subtracted from the mean (µs). We design T in such
a way to incorporate both local (cosine distance between neigh-
boring embeddings) and global (mean and standard deviation of
all distances) statistics. The number of topics in a document is
therefore adaptively determined.

Local minima boundary indices from S’s index set I(S)
with scores below T are selected as the set of final segment
boundaries B (Figure 2):

T = µs − σs (5)
B = {j ∈ I(S)|sj is a local mimimum ∧ sj < T} (6)

HyperSeg can be optionally operated in damp mode, where
the number of segments is capped with a logarithm filter. Of ut-
terance boundaries with similarity smaller than T , we select N
boundaries with the smallest boundary cosine similarity, where

N = ⌊log2|{i | scoresi < T}|⌋ (7)

Dampened HyperSeg creates segments less eagerly.

4. Experiments
We measure HyperSeg’s effectiveness with two approaches:
raw segmentation performance (accuracy and speed) and im-
provements in downstream summarization of segmented text.
We also compare simple word- and n-gram counting with Hy-
perSeg to empirically illustrate how HyperSeg performs beyond
naive surface-level lexical matching. We use GraphSeg [17],
BertSeg [13], and CohereSeg [14] as state-of-the-art baselines.

4.1. Datasets and metrics

Segmentation accuracy of HyperSeg and baselines are tested on
five benchmarks: AMI [20], ICSI [21], Doc2Dial [22], VT-
SSum [23], and Wiki-727k [24]. All datasets except Wiki-
727k consist of dialogue transcripts. We include Wiki-272k to
demonstrate that HyperSeg’s robustness extends to written text
segmentation. Selected benchmarks cover diverse domains, in-
cluding meetings, customer service, lectures, and others. Table
1 includes detailed statistics of each dataset.

Linear segmentation is evaluated as a binary classification
problem for each possible utterance boundary. Segmentation
accuracy is measured with classification F1 scores and Bound-
ary Similarity [25]. The F1 measure captures the harmonic
mean between precision and recall for the binary classification
problem (boundary-or-not). Boundary Similarity measures the
inter-coder agreement between system and reference segmenta-
tions.

Downstream summarization accuracy is measured by how
much the system summary overlaps with the ground-truth sum-
mary. We measure ROUGE-1 (R1), ROUGE-2 (R2), and
ROUGE-L (RL) [26] between reference and system summaries.
An off-the-shelf BART [27] model trained on the standard
CNN/Daily Mail dataset [28] is used as the downstream sum-
marizer.

5. Results
5.1. Transcript topic segmentation

HyperSeg outperforms baselines in all datasets except ICSI,
even when the compared systems use the most optimal hyperpa-
rameters (Table 2). For GraphSeg, BertSeg, and CohereSeg, we
report their best possible scores by providing the true number
of ground-truth segments as a hyperparameter. Only HyperSeg
and CohereSeg consistently outperform random segmentation.
Performance of all systems noticeably degrades in AMI and
ICSI, where true segment boundaries constitute less than 2% of
all possible breakpoints. For such sparse datasets where metrics
fail to take near-misses into account, we also report downstream
summarization performance in the next section. All reported re-
sults are averages after 5 runs with different random seeds.

732



Table 3: Average milliseconds elapsed per utterance. HyperSeg is 10 times faster than the next fastest baseline.

Model AMI ICSI Doc2Dial VT-SSum Wiki-727k Mean × HyperSeg

GraphSeg [17] 11.60 13.71 10.66 11.11 9.73 11.36 × 10.42
BERTSeg [13] 11.92 12.02 12.82 11.45 11.22 11.89 × 10.91
CohereSeg [14] 15.99 14.75 15.15 15.28 15.76 15.39 × 14.12
HyperSeg (ours) 0.77 0.70 1.19 1.28 1.49 1.09 × 1

On average, HyperSeg is 10 times faster per utterance than
the next quickest baseline GraphSeg (Table 3). Reported seg-
mentation speeds are measured on an AMD EPYC 7742 CPU
and four 80GB A100 GPUs. All baseline runs were conducted
on GPUs, while HyperSeg ran entirely on the CPU.

5.2. Downstream summarization performance

To demonstrate the effect of accurate topic segmentation on
downstream summarization, we apply HyperSeg to AMI and
ISCI before summarizing the transcripts. Compared to no seg-
mentation, naive segmentation of equal segment length, and
random segmentation, HyperSeg always improves summariza-
tion in terms of ROUGE scores (Table 4).

Table 4: Downstream summarization accuracy. Only HyperSeg
yields consistently better ROUGE scores than random or naive
baselines.

AMI ICSI

Model R1 R2 RL R1 R2 RL

None 0.19 0.03 0.12 0.17 0.03 0.13
Random 0.27 0.05 0.13 0.16 0.02 0.08
Uniform 0.13 0.01 0.08 0.22 0.03 0.12
GraphSeg [17] 0.22 0.04 0.13 0.23 0.04 0.12
BERTSeg [13] 0.22 0.04 0.14 0.21 0.04 0.11
CohereSeg [14] 0.27 0.06 0.12 0.15 0.04 0.08
HyperSeg 0.32 0.06 0.14 0.30 0.08 0.15

5.3. Difference to simple lexical matching

HyperSeg offers two pronounced advantages over simple word
or n-gram count-based topic segmentation: fine-grained sen-
tence similarity scores and flexibility in token granularity. The
distributed nature of HyperSeg produces a continuous spread
of utterance boundary similarities (Figure 3). Word or n-gram
counting yields a sparse spread of utterance similarities. Such
segmentation renders the vectors unusable as features in possi-
ble downstream classification networks. HyperSeg can also ac-
commodate character-level tokenization by modifying its bind-
ing algorithm. Such change in granularity offers a trade-off
between robustness against character error rate and represen-
tational burden (an utterance vector has to contain more token
vectors within a designated dimension compared to word-level
tokenization).

6. Conclusion
HyperSeg is a new state-of-the-art topic segmentation algo-
rithm. We find that hyperdimensional computing’s represen-
tational benefits can be effectively realized in dialogue topic
segmentation. HyperSeg is more accurate and lightweight com-

Figure 3: Distribution of utterance vector similarities (VT-
SSum). Regardless of tokenization scheme (word-level or 3-
gram), HyperSeg produces more gradual utterance similarity
vectors compared to word or n-gram counting that use one-hot
token vectors.

pared to best-performing baselines. We attribute HyperSeg’s
performance to the robustness of HDC embeddings across do-
mains. Such advantages make HyperSeg an ideal component in
ASR post-processing, which is often resource-constrained. We
confirm that HyperSeg’s representational capabilities extend to
downstream summarization as well.

While this paper deals solely with linear transcript seg-
mentation, a more natural approach to dialogue segmentation
would take repetitive alternations of topics into consideration.
Such methods require gathering related utterances into non-
linear topical clusters. Equipped with the representational ro-
bustness of hyperdimensional vectors, HyperSeg can be nat-
urally extended to accommodate such advanced schemes for
segmentation. We also leave experiments with different utter-
ance tokenization schemes (character-level, subword-level) for
future research.
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