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Abstract
Our study proposes a novel hybrid active noise control (ANC)
system, called HAD-ANC, that combines an adaptive filter
with deep neural networks. HAD-ANC employs a cascade
design comprising the frequency-domain block least mean
square algorithm and two gated convolutional recurrent net-
works (GCRNs). The first GCRN follows the adaptive filter
to handle nonlinear distortion by reducing the residual error of
linear filtering and models the reverse of both loudspeaker and
secondary path. The second GCRN models the loudspeaker and
secondary path to force the adaptive filter to estimate the pri-
mary path. Additionally, we utilize a delay-compensated ref-
erence signal to consider the causal constraints of frequency-
domain ANC system. Experimental results based on NOISEX-
92 dataset show that the proposed system outperforms recent
ANC methods, enables wideband noise reduction, and indicates
robustness to path changes.
Index Terms: active noise control, adaptive filter, deep learn-
ing, hybrid system, nonlinear distortion

1. Introduction
Active noise control (ANC) is a technology that reduces noise
levels in a target location by generating an anti-noise signal with
the same magnitude but opposite phase via controller to cancel
out the noise signal received by an error microphone [1]. Typ-
ically, feedforward ANC designs involve a controller consider-
ing both primary and secondary paths. The traditional method
has applied adaptive filters to the controller, where filter weights
are updated by an optimization algorithm at every time step.
The filtered-x least mean square (FxLMS) [2], which repre-
sents adaptive filter-based ANCs, is most commonly used as the
controller for noise reduction, owing to its simple implementa-
tion and low computation load. Despite these advantages, this
method uses linear filtering, which cannot address the nonlinear
distortion caused by the limited quality of the loudspeaker [3,4].
The structural solution [5–9] have been proposed to address
nonlinearites.

Recently, researches have been conducted to introduce deep
neural networks (DNN), suitable for modeling nonlinear rela-
tionships, into ANC systems [10–12]. Deep ANC [10] em-
ployed a frequency-domain convolutional recurrent network
(CRN) [13] as a controller, which was the first end-to-end deep
learning approach for ANC. However, the deep ANC involves
more computations than adaptive filters and operates in the
frequency-domain, resulting in high algorithmic delay. Zhang
et al. [11] introduced a low-latency deep ANC that utilizes a re-
vised overlap-add algorithm during signal resynthesis to avoid
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Figure 1: Block diagram of typical feedforward ANC system.

latency while maintaining noise reduction performance. On the
other hand, secondary path decoupled ANC (SPD-ANC) [12]
adopted time-domain CRNs, known as SPD modules, to esti-
mate the forward and reverse impulse response (IR) of loud-
speaker and secondary path. The SPD modules compute the
SPD error signal by processing the error and control signals,
which are received at the error microphone and generated at the
adaptive filter. The adaptive filter of SPD-ANC is subsequently
updated to minimize the SPD error signal.

This paper proposes a Hybrid system of an Adaptive filter
and DNNs for the ANC (HAD-ANC) system for effective noise
attenuation. We employ a cascade structure of an adaptive filter
and DNN as a controller, where two algorithms estimate the IR
of the primary path and inverse IR of the loudspeaker and sec-
ondary path, respectively. The DNN also minimizes residual
error caused by underestimating the primary path through lin-
ear filtering. The cascaded structure complements each other,
addressing weaknesses caused by insufficient modeling capa-
bilities and fixed parameters. Another DNN models the for-
ward IR of the loudspeaker and secondary path to estimate the
anti-noise effect. The two DNNs enable the adaptive filter to es-
timate the primary path exclusively. The detailed implementa-
tion of the HAD-ANC employs a normalized frequency-domain
block least mean square (NFBLMS) [14,15] algorithm and two
gated CRNs (GCRNs) [16] for efficient operation via block pro-
cessing. Additionally, we utilize a delay-compensated reference
signal to consider the causal constraints of ANC system [17].

2. Overview of typical ANC system
Figure 1 outlines the typical framework of the feedforward
ANC system, which includes the reference and error micro-
phones and loudspeaker. The primary and secondary paths con-
nect these components. The reference noise signal, x(t), be-
comes the desired signal, d(t), to be deleted through the IR of
the primary path, P (·). The control signal, y(t), becomes anti-
noise, a(t), owing to the IR of the loudspeaker, fLS(·), and
secondary path, S(·), which cancels out the desired signal. Fi-
nally, the error signal, e(t), is expressed as follows:

e(t) = d(t)− a(t)

= P (x(t))− S(fLS(y(t))),
(1)
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Figure 2: Block diagram of the proposed HAD-ANC controller.

where t is the time index. The goal of the feedforward ANC
system is to build the controller to model P (·)/S(fLS(·)) con-
sidering real-time. In the FxLMS series algorithm, x(t) is fil-
tered into a pre-trained linear filter to reduce the effect of S(·).
Subsequently, it is converted into y(t) with an adaptive filter.
On the other hand, the controller of the deep ANC generates
y(t) using the end-to-end deep learning model. The controller
of the SPD-ANC contains an adaptive filter and deep learning-
based SPD module that alleviates the effect of S(·), similar to
FxLMS. Note that y(t) is generated with a convolution of x(t)
and a single adaptive filter in SPD-ANC.

3. The proposed HAD-ANC system
Prior research has employed either an adaptive filter or a DNN
to produce control signals y(t). However, the adaptive filter-
based ANC systems have limited noise attenuation at high fre-
quencies because of convergence and latency, as well known
in these fields [2, 18]. It is likewise recognized that end-to-end
deep learning approaches exhibit incapability in coping with sit-
uations where the primary path suddenly changes [12]. Thus,
our motivation is to tackle both difficulties by deploying a hy-
brid ANC system that concatenates an adaptive filter and DNN
in a cascading configuration.

Figure 2 shows the details of the proposed HAD-ANC con-
troller, which is capable of block processing in an overlap-save
manner, comprising a NFBLMS and two frequency-domain
GCRNs. We employ frequency-domain algorithms allowing for
potential delays because the computational complexity is signif-
icantly less than the time-domain algorithm [10, 14]. Figure 3
illustrates a delay compensation method due to the primary path
in the proposed HAD-ANC. We employ delay-compensated
L-length signal vectors x(n) = [x(nL−D), x(nL + 1 −
D), · · · , x(nL+ L− 1−D)]T and d(n) = [d(nL), d(nL+
1), · · · , d(nL + L − 1)]T where n, T , and D denote the
block index, transpose operation, and delay index between
the reference and error microphone, respectively. Conse-
quently, the frequency-domain reference signal vector, X(n) =
diag

[
F[xT (n− 1), xT (n)]T

]
is obtained with a 2L-point dis-

crete Fourier transform (DFT), where F is a 2L× 2L DFT ma-
trix and diag[σ] is a diagonal operation that make a 2L × 2L-
size diagonal matrix with the components of the L-length col-
umn vector σ; w(n) = [w0(n), w1(n), · · · , wL−1(n)]

T is the
L-tap filter; W(n) = F[wT (n), 0T

L×1]
T is the weight in the

frequency-domain; and 0L×1 is the L-length vector with zero
components. The result of linear filtering U(n) is fed into the
first neural network, GCRN1 to generate the control signal vec-
tor y(n) as follows:

Y(n) = GCRN1(X(n)W(n))

= GCRN1(U(n)),
(2)

y(n) = GY(n). (3)

Figure 3: Diagram of the delay compensation method.

We define G = [0L×L; IL×L]
T F−1 as a time-domain drop op-

eration that removes L samples from the end of the block; F−1

denotes 2L × 2L inverse DFT matrix. Subsequently, an anti-
noise vector, a(n), is obtained by feeding y(n) into fLS(·) and
S(·). The error signal vector e(n) is obtained by subtracting
a(n) from the desired signal vector, d(n).

The HAD-ANC controller uses the error between d(n) and
u(n) as an adaptive filter input to estimate P (·), where u(n)
is the temporal representation of U(n). The error is defined as
the primary error signal vector ep(n). However, a(n) and d(n)
are unknown because the error microphone only treats e(n). We
estimate a(n) and d(n) as â(n) and d̂(n), respectively, by mod-
eling S(fLS(·)) as the second neural network, GCRN2. Then
ep(n) is formulated as follows:

ep(n) = d̂(n)− u(n) = e(n) + â(n)− u(n)
= e(n) + G(GCRN2(Ȳ(n))− U(n)),

(4)

Ȳ(n) = F
[
[GY(n− 1)]T , [GY(n)]T

]T
, (5)

where Ȳ(n) is the input of the loudspeaker in the frequency-
domain. Then, ep(n) is converted into a frequency-domain
primary error vector, Ep(n), by padding with the zero vector
0L×1:

Ep(n) = F[0T
L×1, eTp (n)]

T . (6)

The updated equation for the NFBLMS using the obtained X(k)
and Ep(k) is as follows:

W(n+ 1) = W(n) + µQΛ−1XH(n)Ep(n), (7)

Q = F
[

IL×L 0L×L

0L×L 0L×L

]
F−1, (8)

where µ and H represent a constant step-size, Hermitian oper-
ation. Λ = E

[
X(n)HX(n)

]
is a diagonal matrix comprising

the reference signal powers at each frequency bin, where E is a
expectation operation. Λ, along with the µ, is known as the nor-
malized step-size and enables a increase in convergence [15].

In summary, the NFBLMS and two GCRNs have different
roles. The NFBLMS and GCRN2 estimate the primary path
and the path where the control signal changes to anti-noise, re-
spectively. The GCRN1 is designed to minimize the residual
error caused by the limitations of modeling owing to the lin-
earity of the adaptive filter while simultaneously estimating the
nonlinearity of the loudspeaker and secondary path. High-level
wideband noise attenuation is expected in the proposed HAD-
ANC system because the GCRN1 can reduce the noise addi-
tionally, which is attenuated through linear filtering.

3.1. Training steps for DNNs

We propose two training steps in which the GCRNs are trained
separately according to their purpose. First, the GCRN1 is
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Figure 4: Training step of GCRN1.

Figure 5: Training step of GCRN2.

trained to reduce the noise signal that is fed after the adaptive
filter, as illustrated in Figure 4. Because the primary path error
used as input to the adaptive filter is affected by the GCRN1

output, combining the two algorithms during training is chal-
lenging. Inspired form teacher forcing [19], we store the fixed
weights, Ŵ(n), by estimating the primary path using the NF-
BLMS algorithm in advance and subsequently used them for
the GCRN1 training. Considering that the adaptive filter can
not converge sufficiently, the weights of the NFBLMS algo-
rithms are extracted at various times to obtain the robustness
of the GCRN1 against the estimated primary path error. We
utilize normalized mean square error (NMSE) as the loss func-
tion, which is calculated with error signal and desired signal as:

LGCRN1 = 10 log10
[
Σne2(n)/Σnd2(n)

]
. (9)

Figure 5 shows the second training step that trains the GCRN2

to simultaneously estimate the IR of the loudspeaker and sec-
ondary path. The loss function is calculated with the output of
the GCRN2 and anti-noise as follows:

LGCRN2 = 10 log10
[
Σn|a(n)− â(n)|2/Σna2(n)

]
. (10)

4. Experimental setup
4.1. Data preparation

The development set consisted of 26 h noise signals from the
DEMAND and MS-SNSD datasets excluding the babble sig-
nals. These noise signals were split into six-second audio clips
and normalized. A validation set consisting of 1,563 signals
was chosen for every tenth clip in the development set and the
remaining clips, totaling 14,076 signals, composed a training
set. To introduce scale variation in the training process, we ran-
domly multiplied the training set by a value between 0.3 and
1.0 for every epoch. The engine, factory, and babble noises of
the NOISEX-92 dataset [20] were utilized for testing. These
signals did not overlap with the development set.

We simulated a rectangular cuboid space of 3 m × 4 m ×
2 m, following a typical scenario [10,11,21] where the primary
noise source was far from the wall. The positions of the refer-
ence microphone, error microphone, and loudspeaker were (1.5,
1, 1) m, (1.5, 3, 1) m, and (1.5, 2.5, 1) m, respectively. Note that,
the delay D is set to 90 samples due to the fixed room condition.
IRs of the primary and secondary paths were set to 160-length,
and those were generated with ten reverberation times (RT60s)
of 0.15, 0.175, 0.225, 0.25 s were used for training, and 0.1, 0.2,
0.3, 0.4, 0.5, 0.6 s were used for testing. Following [5, 10–12],
the scaled error function [22] was utilized to represent the loud-
speaker saturation effect of the major nonlinearity of the ANC

Table 1: Performance comparison of ANC systems for RT60 of
0.2 s in terms of the NMSE.

Noise type Engine Factory Babble
η2 1.0 0.5 0.1 1.0 0.5 0.1 1.0 0.5 0.1

FxLMS -4.02 -4.02 -2.69 -2.02 -2.02 -1.99 -2.77 -2.77 -2.56
THF-FxLMS -5.69 -5.69 -5.69 -2.34 -2.34 -2.34 -3.13 -3.13 -3.13

SPD-ANC -7.09 -7.09 -7.08 -4.62 -4.62 -4.62 -7.30 -7.30 -7.30
Deep ANC -10.49 -10.49 -10.48 -8.60 -8.60 -8.59 -10.49 -10.49 -10.48
HAD-ANC -10.72 -10.72 -10.71 -8.61 -8.61 -8.61 -10.74 -10.74 -10.74

Figure 6: HAD-ANC performance on untrained paths generated
for different RT60s with η2 = 0.1 in terms of the NMSE.

as follows:

fLS(y) =

∫ y

0

e
− n2

2η2 dn, (11)

where y is the input to the loudspeaker, and η2 indicates the
degree of nonlinearity of the loudspeaker. When η2 tends to in-
finity, fLS(·) becomes a linear function, while the nonlinearity
of the function increases when η2 approaches zero. To train the
GCRNs, we randomly set a real number between 0.1 and 1 for
η2, and 0.1, 0.5, and 1.0 were chosen for testing.

4.2. Model configuration

Two GCRNs in the HAD-ANC had the same structure and con-
sisted of 1.84 million parameters each. The GCRN consisted
of an encoder with five gated convolutional blocks, two long
short-term memory (LSTM) [23] layers, and a decoder with
five gated deconvolutional blocks. Each gated convolutional
block employed two convolutional layers with a stride of two
and kernel size of three for the gated mechanism [24]. The fre-
quency and channel dimension of the feature map was halved
and doubled, respectively, each time it passed through a block.
We set the output channel size at 16 for the first blocks. Batch
normalization [25] and exponential linear unit activation func-
tion [26] were applied successively between the blocks. Two
LSTM layers consisted of 128 nodes each, and the gated de-
convolution blocks were symmetrical to the gated convolution
blocks. Further details regarding the model configuration are
similar to those in [16]. The length of the reference signal vec-
tor, L, was set to 64, which is smaller than the delay between
reference microphone and loudspeaker. The step-size, µ, of the
NFBLMS algorithm was set to 0.1 and the filter length was set
to 64, the same as the length of the L.

Two GCRNs were trained using the Adam optimizer [27]
for 30 epochs with a learning rate of 0.001 and the batch size
was set to 32. The GCRN1 and GCRN2 were trained for ten
hours each, on a system consisting of an Intel i9-11900K CPU
@ 3.50GHz using 16 threads and an NVIDIA GeForce RTX
2080 Ti GPU, using PyTorch version 1.10.21. To test the pro-
posed HAD-ANC system, we used a single thread of the CPU,
which achieved an average processing time of 2.92 ms for a 4
ms block, resulting in a real-time factor of 0.705. Note that, the
block size of 4 ms was considered acceptable for conventional
ANC methods [10].

1Our PyTorch implementation including subscription of data prepa-
ration at https://github.com/wndvlf96/HAD-ANC.
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Figure 7: Simulated primary path and estimated filter weights of
HAD-ANC on the engine noise for RT60 of 0.2 s with η2 = 0.1.

Figure 8: Power spectral density of ANC systems on the engine
noise for RT60 of 0.2 s with η2 = 0.1.

5. Experimental results
We evaluated the performance of the ANC systems in terms of
NMSE on untrained paths. The performance of the proposed
HAD-ANC was compared with those of the FxLMS [2], tan-
gential hyperbolic function-based FxLMS (THF-FxLMS) [5],
deep ANC [10], and SPD-ANC [12]. For the adaptive filter
based ANC systems, the filter lengths were set to 64, the same
as that of HAD-ANC. We report best step-size to yield high-
level noise attenuation in validation set. We set µ to 0.5, 0.06,
0.1 with respect to engine noise, factory noise, babble noise
in FxLMS and THF-FxLMS. µ for all types of noises in SPD-
ANC was set to 0.01, 0.003, 0.001. In particular, the ANC
systems of the FxLMS series estimated various secondary paths
using the training set in advance, and the performance evalua-
tion for each test set was averaged after measuring the NMSE
using all secondary paths.

Table 1 and Figure 6 summarize the performance of the pro-
posed models on the untrained IRs with different RT60s and
compare them with other models for RT60 of 0.2 s. As shown
in Figure 6, the HAD-ANC showed a low NMSE in a reverber-
ation environment where RT60 was greater than 0.4 s. Notably,
performance degradation occurred with RT60 of 0.1 s, and we
confirmed that a mismatch occurred in estimating the IRs of the
loudspeaker followed by the secondary path using the GCRN.
When η2 varied from 1.0 to 0.1, a performance degradation
of the FxLMS was observed for all noises, as specified in Ta-
ble 1. The SPD-ANC and THF-FxLMS performed better than
the FxLMS because these could model nonlinearity. The SPD-
ANC achieved a better noise attenuation than the THF-FxLMS
on the untrained path. The deep ANC outperformed the SPD-
ANC and THF-FxLMS in terms of the NMSE. The HAD-ANC
slightly outperformed the deep ANC in all types of noises when-
ever η2 changed and as η2 decreased from 1.0 to 0.1. These
results show that the HAD-ANC performed robustly on var-
ious reverberation environments, degrees of nonlinearity, and
noise types. Figure 7 illustrates the differences between the fil-
ter weights of the HAD-ANC and primary path estimated from
the experimental results in Table 1. We confirmed that the NF-
BLMS of the HAD-ANC sufficiently tracks the primary path,

Figure 9: NMSE of ANC systems where the primary path is in-
verted during simulation on the babble noise with η2 = 0.1.

indicating that the primary path error estimated through two
training steps proposed in Subsection 3.1 successfully estimated
the actual value. Figure 8 shows the differences in noise attenu-
ation between the adaptive filter- and DNN-based ANC systems
in the frequency-domain. In the adaptive filter-based ANC sys-
tems, such as the FxLMS, and THF-FxLMS, noise attenuation
occurs only in the low-frequency band. In contrast, the HAD-
ANC and DNN-based ANC systems performed outstandingly
in wideband noise reduction. In the case of the HAD-ANC, we
assume that the combined structure of the GCRN and NFBLMS
successfully overcomes the limitations of adaptive filtering.

5.1. Simulation of abrupt path change

Figure 9 shows the NMSE when the abrupt path change occurs.
We employed babble noise in this experiment, and η2 was set to
0.1. We initialized the IRs of the primary and secondary paths
with RT60 of 0.2 s. Following [12], we changed the primary
path by multiplying -1 at the beginning of the 48,000th iteration.
In the deep ANC, which attenuates noise with fixed parameters,
the algorithm diverges when the primary path changes. Other
ANC systems reduced the noise by converging the adaptive fil-
ter with a changed IR. The HAD-ANC generated the control
signal with the GCRN of fixed parameters, similar to the deep
ANC, but outperformed the others because the NFBLMS could
track the paths change and deep learning model was used to es-
timate the nonlinearity of the loudspeaker and secondary path.

6. Conclusion
In this study, we proposed the HAD-ANC comprising the NF-
BLMS and GCRNs that two GCRNs forced the NFBLMS to
estimate the primary path. GCRN1 estimated the IRs of the
loudspeaker and secondary path, whereas GCRN2 estimated
the inverse of the former while minimizing the residual error. In
experimental results, the HAD-ANC achieved wideband noise
attenuation and involved robustness for the primary path chang-
ing similar to the DNN- and adaptive filter-based ANC, respec-
tively. However, our study used a fixed room condition and
fixed time delay compensation strategy, which may not be ap-
plicable in more general scenarios. Future work could address
this limitation by developing a time-alignment calculator such
as the generalized cross-correlation phase transform.
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