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Abstract
We examine the speech modeling potential of generative spo-
ken language modeling (GSLM), which involves using learned
symbols derived from data rather than phonemes for speech
analysis and synthesis. Since GSLM facilitates textless spoken
language processing, exploring its effectiveness is critical for
paving the way for novel paradigms in spoken-language pro-
cessing. This paper presents the findings of GSLM’s encoding
and decoding effectiveness at the spoken-language and speech
levels. Through speech resynthesis experiments, we revealed
that resynthesis errors occur at the levels ranging from phonol-
ogy to syntactics and GSLM frequently resynthesizes natural
but content-altered speech.
Index Terms: speech synthesis, noise reduction, speech correc-
tion, self-supervised learning

1. Introduction
The field of natural language processing has made significant
advancements [1], particularly in the area of language models.
Studies have shown that language models can naturally learn
multiple tasks even without supervision, which can enable the
model to comprehend, answer questions, summarize, and trans-
late text [2–4]. Despite the success in text-level language mod-
eling, it does not handle spoken-language expressions, which is
another essential component of speech. To resolve this prob-
lem, investigations on speech-language models through the use
of extensive unlabeled speech data have been conducted [5–10].

The most promising approach to this problem is generative
spoken language modeling (GSLM) [11], which involves learn-
ing the acoustic and spoken linguistic features only from speech
audio. As shown in Fig. 1(a), GSLM involves analyzing and
synthesizing speech audio through a sequence of discrete sym-
bols. These symbols can be viewed as pseudo-phones, though
they are not exactingly equivalent to phonemes or phones as
those defined in phonetics [11–13]. Since these symbols can be
determined through training, GSLM does not require transcrip-
tions associated with speech data, i.e., it enables text-free spo-
ken language processing [14–16]. It also potentially expands
the available speech data beyond carefully designed and anno-
tated laboratory data to real-world data.

However, real-world data usually contain noise and some-
times include speech of non-target speakers. This may affect
the encoding performance in GSLM [17], posing a challenge for
GSLM in being robust to noise contamination. This motivated
us to investigate what information GSLM encodes from noisy
speech and identify which levels of spoken language, ranging
from phonetic to syntactic levels, are affected by noise.

T. Nakamura is currently with National Institute of Advanced In-
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Figure 1: GSLM-model architecture and our investigation.

We investigated the encoding and decoding effectiveness
of GSLM in a noisy environment (see Fig. 1(b)). To do this,
we conducted experiments on speech resynthesis from noisy
speech using the GSLM model trained with speech without
noise. The experimental results were analyzed at the spoken-
language and speech levels.

2. Generative spoken language modeling
This section outlines the architecture of the GSLM model [11].
Figure 1(a) shows a schematic illustration of the GSLM-model
architecture. The GSLM model analyzes and synthesizes an
audio waveform of speech through discrete symbols (units)
instead of phoneme symbols. The primary components of
the GSLM model are speech2unit and unit2speech modules.
The speech2unit module first converts the audio waveform
into framewise features using the encoder of a self-supervised
speech representation model (e.g., contrastive predictive cod-
ing [5], wav2vec2.0 [8], and HuBERT [9]). It then quantizes
the features with a predetermined codebook to obtain the dis-
crete symbol sequence. The codebook is obtained by apply-
ing k-means clustering to the framewise features of the training
data. The unit2speech module decodes the discrete symbol se-
quence into an audio waveform. For this module, we can use the
network architectures used in conventional text-to-speech syn-
thesis models and neural vocoder models (e.g., Tacotron2 [18]).

Another important module of the GSLM model is a unit-
based language model (uLM), which is omitted in Figure 1. It
serves as a generative language model in the unit domain and
enables speech generation and continuation without transcrip-
tion. However, the focus of this syudy was on speech resyn-
thesis, which does not require the uLM. Thus, we analyze the
speech2unit and unit2speech modules.

3. Experimental analysis on noisy speech
3.1. Experimental setup

We analyzed the robustness of GSLM to noise contamina-
tion through speech resynthesis experiments. We chose Hu-
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Table 1: Categorization of noise types of DEMAND

Category Noise type of DEMAND

L-BAB DKITCHIN, DWASHING, NFIELD,
NRIVER, OHALLWAY, OOFFICE, TCAR

M-BAB DLIVING, NPARK, PSTATION,
SPSQUARE, STRAFFIC

H-BAB OMEETING, PCAFETER, PRESTO,
TBUS, TMETRO

Encoder Encoder

Clean speech Noisy speech

Unit level
(= phone level)

/k/ /e/ /…/ /k/ /ɔ/ /…/
Phoneme level

Decoder Decoder
Speech level

Whisper ASR Whisper ASR
“Case …” “Cause …”

Word/syntactic
level

Figure 2: Levels investigated in experiments.

BERT [19] with the codebook of 200 classes as the speech2unit
module and Tacotron2 [18] as the unit2speech module, which
achieved the highest performance in word error rate (WER) and
mean opinion score of synthesized speech in [11]. The GSLM
model, in which the encoder is trained on the LibriSpeech cor-
pus [20] and decoder is trained on the LJSpeech corpus [21] is
available via the fairseq toolkit [22].

The noisy speech signals were created by adding noise sig-
nals to clean speech signals with varying signal-to-noise ra-
tios (SNRs) from 0 to 15 dB with an interval of 5 dB. We
used the dev-clean set of the LibriSpeech corpus (2704 ut-
terances) [20] as the clean-speech signals. The noise signals
were drawn from the diverse environments multichannel acous-
tic noise database (DEMAND) [23], which contains noise sig-
nals recorded with a 16-channel microphone array in 17 noisy
environments. We randomly chose one of the channels for each
noise signal. The number of the test dataset was 183, 872 in
total.

To examine the effect of background speech, we classified
the noise types into three categories along with the amount of
speech contained in the noise. Table 1 shows the categorization
of the noise types. See [23] for details of these noise types. L-
BAB is the collection of the noise types that contain little or no
speech, i.e., low babble noise. M-BAB contains the noise types
including speech in less than half the signal length. H-BAB is
the collection of the rest, i.e., high babble noise. Some of the
background speech came from radio, television, and telephone.

We investigated at spoken-language (Section 3.2) and at
speech (Section 3.3). The former was aimed at exploring
which spoken-language content changes due to noise contam-
ination, while the latter was aimed at finding the relation be-
tween changes in spoken-language levels and those in speech
levels. Figure 2 summarizes the levels investigated.

3.2. Analysis at spoken language levels

We examined the impact of noise on the spoken language level
from phonetic to syntactic levels.

Phone level: Since the discrete symbols of GSLM can be
viewed as pseudo-phones, we defined a counterpart of the WER

Table 2: UERs [%] of noisy speech

SNR
15 dB 10 dB 5 dB 0 dB

L-BAB 13.4 17.1 22.0 28.6
M-BAB 20.2 25.9 34.3 47.1
H-BAB 21.8 29.2 40.1 54.1
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Figure 3: P (phoneme|unit). The darker the color, the more
uniquely the unit is mapped by a single phoneme.

for the discrete symbol sequences which we call the unit er-
ror rate (UER). The UERs were computed in the same manner
as the WER but using the discrete symbol sequences obtained
from the clean and noisy speech as reference and hypothesis,
respectively.

Table 2 shows the average UERs. The UER was above 10 %
even under the mildest condition (SNR of 15 dB and L-BAB)
and increased significantly as the SNR decreased. This indi-
cates that the GSLM model is vulnerable to noisy inputs when
trained with speech without noise. We also observed that back-
ground speech deteriorated encoding performance, which was
further worsened by lower SNR. This observation suggests that
the encoder partially encodes background speech.

Phoneme level: For phoneme-level analysis, we first trained
unit-to-phoneme mappings, such as allophone-to-phoneme
many-to-one mappings. An allophone is a set of phones mapped
to a phoneme in a particular language, e.g., [ph, p] (phones)
→ /p/ (phoneme). The IBM model 2 aligner with monotonic
alignment constraints aligns unit sequences of clean speech
and phoneme sequences obtained from texts in the LibriSpeech
corpus. We calculated the probability P (phoneme|unit) and
mapped each unit to its most probable phoneme, e.g., [”128”,
”52”] (units) → /p/ (phoneme). The phonemizer and aligner
used were espeak [24] and fast align library [25], respec-
tively. We calculated the phoneme error rate (PER), just as we
calculated the UER in the phone-level evaluation. The reference
and hypothesis are phoneme sequences mapped from clean-
speech units and noisy-speech units, respectively. Repeated
symbols were removed from the sequence to prevent duplica-
tion of the same phoneme due to the consecutive estimation of
symbols. We used 40 phonemes after removing the stress marks
from the espeak notation.

Before discussing the PER, we show alignments from units
to phonemes. Figure 3 shows the heatmap of the probabil-
ity P (phoneme|unit). We can find three trends. First, some
phonemes, e.g., /g, h, j, u,

∫
/, have high probability to their cor-

responding phonemes, meaning that these phonemes are more
uniquely mapped to the single phonemes. However, /n, r, s, @,
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Table 3: PERs [%] of noisy speech

SNR
15 dB 10 dB 5 dB 0 dB

L-BAB 14.8 18.1 21.9 27.2
M-BAB 20.3 25.3 32.5 43.9
H-BAB 24.4 31.9 44.4 61.9
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Figure 4: Heatmap of confusion matrix at phoneme level. Val-
ues are on log10 scale. Only misrecognized phonemes are
counted; correctly recognized ones are not shown in this figure.
Noise condition is mildest case: 15 dB SNR of L-BAB noise.

I/ have many darker cells and mapped from many units. Fi-
nally, /q, x, y, Z/ have only brighter cells. One individual unit is
mapped to each of the phonemes, but the probability is low.

Table 3 lists the average PERs with varying SNR. Consis-
tent with the trend shown in UER, PER increased as SNR de-
creased and reached closer to H-BAB. In M-BAB and L-BAB,
lower PERs (Table 3) were observed compared with UERs (Ta-
ble 2). However, the PERs in H-BAB increased regardless of
the SNR. Therefore, we can deduce the following two points:
First, some unit errors in L-BAB and M-BAB are within al-
lophones and negligible at the phoneme level, and second, unit
errors in H-BAB change the phonemes. This is reasonable if the
background speech in H-BAB causes changes in the phoneme
level.

To discuss the PER results, we computed the confusion
matrix of the phonemes. Specifically, we calculated the ma-
trix by using fast align to align the groundtruth and hy-
pothesis phonemes used in the PER calculation. The results
of the confusion matrix are shown in Figure 4. First, focusing
on the groundtruth phonemes (i.e., x-axis), we see that most
of the errors are concentrated in specific phonemes, e.g., /e,
æ, r/, etc. Therefore, we can say that units corresponding to
these phonemes entangle the phonemes. Next, focusing on the
error pairs (i.e., the entire matrix), the matrix is very sparse.
Some errors are close in articulation, e.g., /r/ (x-axis) → /l/ (y-
axis); however, most errors are not, e.g., vowels ⇔ consonants.
Therefore, it is likely that the GSLM encoder captures features
that are different from the human articulations.

Word level: For the word-level analysis, we compared the
noisy and resynthesized speech in terms of WER. The refer-
ences are transcriptions provided by the LibriSpeech corpus,

Table 4: WERs [%] of raw input (before slash) and resynthe-
sized (after slash) speech per SNR. Values of CLEAN are for
clean speech

SNR
15 dB 10 dB 5 dB 0 dB

CLEAN 4.3/14.5

L-BAB 5.4/15.3 5.5/16.5 5.4/20.3 7.9/27.1
M-BAB 5.4/17.1 6.0/20.8 7.7/30.9 12.8/52.5
H-BAB 5.8/19.8 8.5/28.6 11.4/49.0 25.5/75.8
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Figure 5: Scatterplots between word frequency and ∆WER per
SNR. Blue lines are regression lines.

while the hypotheses are automatic speech recognition (ASR)
results obtained from the noisy/resynthesized speech by using
Whisper-base [26].

Table 4 lists the average WERs of the noisy and resynthe-
sized speech. Since Whisper had recognition errors on some
clean speech, we computed WERs for the clean speech and
their resynthesized versions for reference. Comparing the in-
put and resynthesized speech, the difference in WER was above
ten points (4.3 → 14.5) for the reference. Compared with the
reference, the WERs for the noisy inputs increased only a few
points in L-BAB and at the SNRs of 10 and 15 dB. The results
indicate that GSLM resynthesis dominates in word-level degra-
dation rather than mild non-speech noise contamination.

The WER scores increased significantly under noise con-
ditions with more background speech and lower SNRs, similar
to the results in UER and PER. The scores also apparently in-
creased, along with the decrease in SNR and the increase in
background speech. These results indicate that noise contam-
ination (particularly, background speech) may change the spo-
ken content in GSLM resynthesis.

For a more detailed analysis, we investigated the relation-
ship between word usage frequency in the corpus and WER. To
remove the effects of speech recognition performance, we de-
fined a normalized WER (∆WER) by subtracting the WERs of
the CLEAN noise category from those of L-BAB, M-BAB, and
H-BAB for the resynthesized speech.

Figure 5 shows scatterplots between word frequencies and
∆WER per SNRs. The ∆WERs were negatively correlated
with word frequency, which became more pronounced as SNR
decreased. This result indicate that word substitutions are more
likely to occur for less frequent words; for example, words such
as “the” appeared the most in the corpus and showed a WER of
3.3 %, but words such as “ill” and “law”, which have the same
number of phonemes appeared about 100 times in the entire
corpus, and showed a WER of around 40 %. We can also ob-
serve that both the slope and bias of the regression line increase
as the SNR decreases. This indicates that noise contamination
not only degrades the overall performance of word recognition
but also worsens the recognition of rare words.

Syntactic level: To quantify syntactic errors by resynthesis, we
used a WER counterpart for word class, i.e., part-of-speech,

1087



Table 5: WCERs [%] of raw input (before slash) and resynthe-
sized (after slash) speech per SNR. Values of CLEAN are for
clean speech

SNR
15 dB 10 dB 5 dB 0 dB

CLEAN 3.1/11.7

L-BAB 4.0/12.3 4.0/13.1 4.5/16.1 5.7/21.6
M-BAB 3.9/13.6 4.4/16.5 5.8/24.4 9.9/41.8
H-BAB 4.3/15.6 6.5/23.1 8.8/39.6 20.6/61.8

which we call the word class error rate (WCER). The references
and hypotheses are the word class sequences extracted from the
texts of the LibriSpeech corpus and the speech recognition re-
sults, respectively. The word classes were estimated using the
natural language toolkit [27].

Table 5 lists the average WCERs of the noisy and resynthe-
sized speech per SNR. We observe a similar trend in WCER as
in UER, PER, and WER. Regardless of the SNRs and noise cat-
egory, the WCERs were slightly lower than the WERs but still
large. This result indicates that the word substitution caused by
the resynthesis from the noisy speech frequently changes the
word class.

3.3. Analysis at speech level

We next evaluated GSLM at speech levels by quantifying the
resynthesis quality of GSLM under noisy environments. For
this evaluation, metrics for measuring codec distortion and
resynthesized speech quality were used. The former metric is
within speech levels, while the latter is a comparison between
speech and spoken language levels.

Codec distortion: Since the discrete symbol sequence is a
compressed speech representation, GSLM can be viewed as a
neural speech codec. Thus, we investigated the distortion be-
tween an input speech and its resynthesized version, which we
call codec distortion. The codec distortion was measured using
WARP-Q, which was developed to predict the quality of neural
speech codecs [28]. It internally compensates for the tempo-
ral discrepancy between the ground truth and resynthesized sig-
nal, and is robust to the changes in pronunciation timing after
resynthesis that often occur in neural speech codecs. It ranges
from one to five points and increases as the codec distortion
decreases. We used clean speech as the ground truths for com-
puting WARP-Q.

Figure 6 shows the distributions of the WARP-Q values
for noisy and resynthesized speech1. The WARP-Q improved
from the resynthesis as the SNR decreased and the background
speech increased which is consistent with the results in Sec-
tion 3.2. The WARP-Q values of the noisy speech were weakly
or not correlated with those of the resynthesized speech under
all noise conditions. These results indicate that GSLM resyn-
thesis on noisy speech decrease codec distortion when speech
is included in the noise, but does not mitigate distortion in gen-
eral.

Naturalness: To evaluate the naturalness of the resynthe-
sized speech, we used a pre-trained UTMOS model [29] strong
learner [30]. It predicts a five-scale pseudo-mean opinion score

1We treated the additive noise as a form of codec distortion and com-
puted the WARP-Q values for the noisy speech.
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Figure 6: Scatterplots of noisy (raw) and resynthesized (resyn)
speech in terms of WARP-Q at various SNRs. Region above di-
agonal line indicates WARP-Q improvement via GSLM resyn-
thesis.

0 25 50 75100
WER

1
2
3
4
5

UT
M

OS

SNR: 15 dB SNR: 10 dB SNR: 5 dB SNR: 0 dB

H-BAB
L-BAB

Figure 7: Scatterplots of ∆WERs and MOS values by UTMOS
for resynthesized speech. Blue and orange lines are regression
lines for L-BAB and H-BAB, respectively.

(MOS) value from a synthesized speech2. Unlike WARP-Q,
UTMOS does not require clean speech for computation and is
agnostic to spoken-linguistic changes between clean and resyn-
thesized speech. Therefore, we investigated the relation be-
tween linguistic changes (∆WER) and speech quality (UT-
MOS).

Figure 7 shows the sentence-by-sentence relationship be-
tween ∆WER and values by UTMOS. The values by UTMOS
were distributed around 3.8 points, and their average decreased
as SNR decreased. This result is consistent with the observation
in the literature where the discrete speech representation is ap-
plied to speech separation/enhancement [32]. There were either
weak correlations or none between ∆WER and UTMOS val-
ues under all noise conditions, showing that GSLM frequently
converts noisy speech into natural but content-altered speech.
L-BAB does not degrade the UTMOS value but worsens the
WER.

4. Conclusion
We assessed the GSLM performance for noisy speech at the
spoken-language and speech levels through speech-resynthesis
experiments. The analysis at the spoken-language levels shows
that the noise contamination strongly affects resynthesis perfor-
mance and promotes frequent changes in phones, phonemes,
words, and word classes. It also suggests that the GSLM en-
coder captures different speech features from human articula-
tions. The analysis at the speech levels reveals that GSLM fre-
quently resynthesizes natural but content-altered speech and has
the risk of falsification if GSLM is used in real (noisy) situations
without any special care.
Acknowledgments. This work is supported by JSPS KAKENHI
22H03639, 23H03418, and Moonshot R&D Grant Number JP-
MJPS2011.

2Although the UTMOS was trained with English/Chinese synthe-
sized speech of the Blizzard Challenge or Voice Conversion Challenge,
and works robustly for speech synthesized in other languages and with
speech synthesis systems [31].
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