
A Simple RNN Model for Lightweight, Low-compute and Low-latency
Multichannel Speech Enhancement in the Time Domain

Ashutosh Pandey1, Ke Tan1, Buye Xu1

1Reality Labs Research at Meta
apandey620@meta.com, tanke1116@meta.com, xub@meta.com

Abstract
Deep learning has led to unprecedented advances in speech en-
hancement. However, deep neural networks (DNNs) typically
require large amount of computation, memory, signal buffer and
processing time to achieve strong performance. Designing a
DNN to meet a given resource constraint requires dedicated
efforts. This study proposes a novel recurrent neural network
(RNN) based model for time-domain multichannel speech en-
hancement that can be easily tuned to meet a given constraint.
We present results of training the model at different scales,
where algorithmic latency varies from 1ms to 16ms, model
size varies from 100 Thousand to 25 Million parameters, and
compute to process one second of speech varies from 100 Mega
to 25 Giga multiply-accumulates (MACs). Experimental re-
sults demonstrate that the proposed model can obtain similar or
better performance using fewer computes and parameters than
competitive approaches to low-latency multichannel speech en-
hancement.
Index Terms: Multichannel speech enhancement, time-domain
speech enhancement, RNN, lightweight, low-compute, low-
latency

1. Introduction
Acoustic interference, such as background noise and room re-
verberation, is unavoidable in the real world. It decreases the
intelligibility and quality of speech, creating problems for hu-
mans and machines. Speech enhancement is concerned with
removing acoustic interference from speech signals. Monaural
speech enhancement uses recordings from a single microphone
and can utilize only spectral information. In contrast, multi-
channel speech enhancement uses multiple microphones to ex-
ploit additional spatial information for improved discrimination
between target and interference [1].

Multichannel speech enhancement using deep neural net-
works has been extensively investigated in the past few years.
One of the popular approaches is to combine a DNN with a
traditional spatial filter, such as a mask-based MVDR beam-
former where the DNN is used to estimate the speech and
noise statistics for the spatial filter [2, 3, 1]. Another approach
is to train DNNs with input features encoding explicit spatial
information [4, 5]. A more recent trend is to use complex
spectrum mapping [6] for complex spectrogram enhancement
[4, 7, 8, 9, 10, 11] or waveform mapping [12] for time-domain
enhancement [13, 14, 15, 16, 17]. Although end-to-end train-
ing has led to dramatic improvements in the performance, tradi-
tional spatial filters are still widely utilized even with stronger
models [4, 18].

While DNNs obtain impressive enhancement, they come
with a major drawback; they require enormous amount of re-

sources, such as processing time, computation, run-time mem-
ory, and power consumption. The processing time consists of
algorithmic and computational latency. Existing studies have at-
tempted to reduce the algorithmic latency by reducing the win-
dow size in short-time processing [15, 19, 18]. Computational
latency, on the other hand, is dependent on the amount of com-
putation and hardware implementation. In research, a popular
approach to reducing computational latency has been to reduce
the total amount of computation, which also leads to reduction
in the power consumption [20, 21].

The run-time memory is a function of the model size and
the dependency graph of computation. The model size is mea-
sured by the number of parameters in the network, and it has
been a standard practice to report parameter efficiency to advo-
cate for an efficient model [22, 23]. The dependency graph of
computation, however, determines how computations are per-
formed within a network, and has been largely ignored in the
past studies. One common case is that a given layer in the
network uses outputs from many of the previous layers or the
past outputs, which leads to a higher run-time memory. For
example, popular approaches use UNet-based [18, 24] or fully-
convolutional networks [25, 15, 19] with skip connections and
dilated convolutions with large temporal contexts. However,
they may not be ideal for devices requiring small run-time mem-
ory. Other cases include heavy use of convolutional layers and
attention, where weight sharing and attention map computation
could lead to high memory consumption even though the model
size is relatively small.

Optimizing a DNN model for speech enhancement with a
given resource constraint can be a daunting task, since DNNs
require a lot of tuning of hyperparameters to achieve good per-
formance. Therefore, there is a need to develop a model or
framework that provides efficient mechanism for controlling
different aspects of resource constraints while providing satis-
factory speech enhancement. This study attempts to fill this gap
by proposing a simple recurrent neural network (RNN) model
for multichannel speech enhancement in the time domain. The
model takes as input the raw samples of noisy speech, performs
denoising and dereverberation, and outputs raw samples of en-
hanced speech.

The time-domain approach is adopted to provide the model
with a capability to utilize end-to-end training for learning fea-
tures suited for the particular task of speech enhancement with a
given constraint. Moreover, a spatial processing block, inspired
by frequency-dependent spatial filtering, is proposed for effi-
cient spatial context aggregation. The motivation to use RNNs
is two-fold. First, RNNs only require a run-time memory pro-
portional to the size of the hidden state. In contrast to the di-
lated convolutions [25, 24, 26] and self-attention [27, 28] for
temporal context aggregation, RNNs summarize the past infor-

INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

2478 10.21437/Interspeech.2023-2418

Convert
 to

frames

Linear Layer +
Layer Norm +

 PReLU

Spatial
Processing

RNN
 Model

Linear
Layer

Overlap
-add

Layer
Norm LSTM Layer

Norm LSTM Layer
Norm LSTMInput Output

Figure 1: The proposed multichannel RNN model.

mation in a single hidden vector. Consequently, the output of a
given time frame depends only on the previous hidden state and
the current input. Second, RNNs are highly effective for robust
speech enhancement in challenging conditions [29, 30, 27].

The proposed model uses one hyperparameter to manip-
ulate algorithmic latency from 1ms to 16ms. Similarly, the
number of parameters and computations are controlled by one
hyperparameter. We train models with number of parameters
varying from 100 Thousand (K) to 25 Million. The compute
to process one second of audio is varied from 100 Mega to 25
Giga multiply-accumulates (MACs). Additionally, the model
is designed to have minimal run-time memory as it comprises
only a stack of several RNN layers.

2. Problem Definition
Given an array with C microphones, a multichannel recording
Y ∈ RC×N is defined as

Y = Sd + SR +N (1)

where N is the number of samples, Sd, SR and N ∈ RC×N

and respectively represent direct-path speech, its reverberation,
and interfering signals arriving at microphones. The goal of
multichannel speech enhancement is to get a good estimate of
the direct-path speech sdr at a reference microphone r using
noisy recording Y . In other words, the objective is to remove
room reverberation and noises from the degraded speech at a
reference microphone.

3. RNN for Multichannel Speech
Enhancement

The proposed RNN model for multichannel speech enhance-
ment is shown in Fig. 1. A given multichannel input signal of
shape C ×N is converted to overlapping frames with an input
window size of iW and a hop size of S, leading to a tensor of
shape C × T × iW with T frames. Next, all the frames are
projected to a higher dimension of size H using a linear layer
followed by layer normalization [31] and parametric rectified
linear unit (PReLU) nonlinearity [32].

After this, the tensor of size C × T × H is reduced along
the channel dimension using a spatial processing block. The
spatial processing block comprises H trainable filters of length
C that are applied across channels. Such filtering resembles
frequency-dependent filtering in traditional spatial signal pro-
cessing with H corresponding to the number of frequency bins.
These time-invariant filters are independent of the microphone
signals at inference time, unlike traditional adaptive spatial fil-
ters. The output of the spatial processing block encodes spatial,
spectral and temporal information to be utilized by the follow-
ing modules in the network.

The spatial processing block is followed by an RNN model
comprising a stack of B long short-term memory (LSTM)

DNN
Model

DNN
Model

(a) (b)

Figure 2: Explored approaches to achieve a desired latency L.
(a) Minimum input context, (b) Fixed input context of length
W > L .

blocks. Each LSTM block consists of a layer normalization
followed by one layer of LSTM with hidden size H . The use of
LSTM ensures that the output for a given input frame is depen-
dent only on the the input in the current frame and the hidden
states computed from one past frame. The output of the RNN
model is projected to the output window size of oW using a lin-
ear layer. Finally, overlap-add is applied to obtain the enhanced
signal at the reference microphone.

The hyperparameter H represents the width of the network
and is used for manipulating the number of computation and pa-
rameters. Adopting LSTM as the recurrent layer topology leads
to quadratic relation between H and the number of computa-
tions and parameters. In other words, doubling the value of H
quadruples the number of computation and parameters. This re-
lation can be changed to linear by employing the idea of group
LSTMs with two groups [33, 34]. We decided not to investigate
this because of the significantly increased training time due to
the double number of LSTMs and consistently subpar perfor-
mance with similar width. We also explored other RNNs, such
as gated recurrent unit (GRU) and simple recurrent unit (SRU),
but decided to stick with LSTM because of its superior perfor-
mance.

3.1. Algorithmic Latency

The latency of a speech enhancement system comprises of algo-
rithmic latency and computational latency. The computational
latency is dependent on the amount of compute and hardware
implementation, and the algorithmic latency is attributed to the
employed algorithm. For a system using short-time processing,
the algorithmic latency is equal to the employed window size.
In this work, we modify iW and oW to obtain a a desired al-
gorithmic latency of L while keeping the hop size S fixed. We
investigate the following two approaches.

3.1.1. Enhancement with Minimum Input Context

This approach, shown in Fig. 2(a), uses a value of L for both
iW and oW to achieve a latency of L. We call this approach
minimum window context, as this is the minimum input context

2479

Table 1: Performance of the proposed model for H = 256 varying latencies using two approaches: (a) minimum input context, b) fixed
input context of 16ms.

STOI (%) PESQ SNR
Mix. 58.8 1.42 -6.6
C → 2 4 8 2 4 8 2 4 8
L ↓ (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b)
1 ms 72.8 73.7 76.9 78.0 80.4 80.8 1.86 1.91 2.00 2.06 2.14 2.15 3.3 3.4 4.2 4.4 4.8 4.9
2 ms 74.0 74.9 78.4 78.8 81.3 81.7 1.92 1.95 2.07 2.11 2.19 2.21 3.4 3.6 4.5 4.6 5.0 5.2
4 ms 74.6 75.5 78.9 79.5 82.0 82.3 1.93 1.97 2.09 2.12 2.21 2.23 3.6 3.8 4.6 4.8 5.2 5.2
8 ms 76.3 76.7 80.0 80.3 83.1 83.0 2.03 2.04 2.17 2.20 2.29 2.30 4.0 4.1 5.0 5.0 5.5 5.6
16 ms 77.8 77.8 80.5 80.5 83.1 83.1 2.13 2.13 2.25 2.25 2.36 2.36 4.2 4.2 5.2 5.2 5.7 5.7

Table 2: Performance of the proposed model for an algorithmic latency of 2ms with varying widths.

STOI (%) PESQ SNR MACs ParamsMix. 58.8 1.42 -6.6
H ↓ C → 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8

64 (a) 66.2 68.2 70.2 1.64 1.68 1.75 1.9 2.2 2.6 108.42M 113.02M 122.24M 104.67K 104.80K 105.06K
(b) 66.1 68.9 71.4 1.63 1.70 1.82 1.9 2.3 2.9 139.01M 172.75M 240.24M 119.01K 119.14K 119.40K

128 (a) 70.1 73.8 77.2 1.76 1.87 2.02 2.7 3.4 3.9 413.44M 422.66M 441.09M 405.92K 406.18K 406.70K
(b) 71.2 74.6 77.3 1.80 1.92 2.02 2.8 3.5 4.0 477.37M 544.87M 679.85M 434.59K 434.85K 435.37K

256 (a) 74.0 78.4 81.3 1.92 2.07 2.19 3.4 4.5 5.0 1.61G 1.63G 1.67G 1.60M 1.60M 1.60M
(b) 74.9 78.8 81.7 1.95 2.11 2.21 3.6 4.6 5.2 1.75G 1.89G 2.16G 1.66M 1.66M 1.66M

512 (a) 77.1 81.6 84.4 2.03 2.23 2.34 4.3 5.3 6.0 6.37G 6.41G 6.48G 6.34M 6.34M 6.35M
(b) 77.9 82.1 85.0 2.07 2.24 2.39 4.4 5.5 6.1 6.69G 6.96G 7.50G 6.46M 6.46M 6.46M

1024 (a) 79.1 83.9 86.6 2.13 2.34 2.48 4.7 6.0 6.7 25.33G 25.40G 25.55G 25.27M 25.27M 25.27M
(b) 80.1 84.2 87.0 2.18 2.37 2.52 5.0 6.2 6.9 26.15G 26.69G 27.77G 25.50M 25.50M 25.50M

that can be used to achieve a latency of L. Assuming that we
want to exploit overlap-add, this approach can provide an algo-
rithmic latency of L = 2×S. We use S = 1ms, which amounts
to an algorithmic latency of 2ms. To achieve a latency of 1ms,
we use iW = 2ms, oW = 2ms, and pad the input with 1ms
of zeros in the beginning, which forces the network to predict
one frame ahead of time.

3.1.2. Enhancement with Fixed Input Context

In this approach, shown in Fig. 2(b), iW is set to a fixed value
of W > L and oW is set to L. The input signal is padded with
zeros of length W −L in the beginning to ensure that the output
frame corresponds to the last oW samples in the input frame. A
similar approach of dual-window short-time Fourier transform
(STFT) has been used in [18] for low-latency complex spectral
mapping. We train models for L from {1, 2, 4, 8, 16} ms. The
W is set to 16ms. The oW is set to L for all the cases except
for 1ms, where it is set to 2ms to exploit overlap-add, and the
input is padded with zeros of length W−L+1 in the beginning.

4. Experiments and Results
4.1. Dataset

We use the Interspeech2020 DNS Challenge corpus [35] to gen-
erate pairs of clean and noisy signals. All the speakers from the
training set are randomly split into pairs of training, test and
validation speakers using a ratio of 85%, 5% and 10%. Simi-
larly, noises are partitioned into distinct sets of training, test and
validation. An eight-microphone circular array with a radius of
10 cm is used to create multichannel data. We use a data gener-
ation algorithm described in past studies [16, 9, 17] to generate
10 seconds long 80K training, 1.6K validation, and 3.2K test
utterances.

The generated dataset can be be considered as a challenging
dataset for speech enhancement. The T60 for reverberation is
uniformly sampled from [0.2, 1.3] seconds. The target speech
is contaminated by 5 to 10 noise sources, its own reverberation,
and reverberation of noise sources. The signal-to-noise (SNR)
between the direct-path speech and interferences (excluding
speech reverberation) is sampled uniformly from [−10, 10] dB.
Moreover, the training target is set to be the direct-path speech
at the first microphone (r = 1), implying that the model is
trained for the difficult task of end-to-end joint denoising and
dereverberation.

4.2. Experimental Settings

All the utterances are resampled to 16 kHz before data gener-
ation. We use signals from the 1st and 5th microphones for
2-channel models, from 1st, 3rd, 5th, and 7th microphones for
4-channel models, and from all the microphones for 8-channel
models. A given mutichannel waveform input to a model is nor-
malized (multiplied with a scalar) to have an overall variance of
one across the microphones.

All the models are developed, trained and evaluated using
PyTorch. We set the number of LSTM blocks (B) to 3. We
train models for 100 epochs using random chunks of 4 seconds
cropped out of 10 seconds long utterances with a batch size of
16. The phase constrained magnitude (PCM) loss proposed in
[26] is used for training all the models. The Adam optimizer
[36] with amsgrad = True and a constant learning rate of
0.0002 is used. The gradient norm is clipped to a value of 0.03.
The combination of gradient clipping and amsgrad = True is
found to be critical to stabilize the training of LSTMs with large
sequences. Additionally, a combination of automatic mixed
precision (AMP) and Nvidia V100 GPUs is utilized for a much
faster training.

2480

Table 3: Performance comparison with baseline models. RNN-H-(a) represents a model using approach (a) with width H .

STOI (%) PESQ SNR MACs (Giga) Params (Millions)58.8 1.42 -6.6
L ↓ Model ↓, C → 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8

4 ms

MC-CRN [18] 77.2 79.8 81.5 2.05 2.14 2.20 3.9 4.7 4.9 3.5 3.5 3.6 2.32 2.32 2.32
RNN-300-(a) 75.5 80.0 83.1 1.96 2.15 2.28 3.8 4.9 5.5 2.2 2.3 2.4 2.21 2.21 2.21
RNN-300-(b) 76.3 80.3 83.2 2.01 2.17 2.28 4.0 5.0 5.5 2.4 2.5 2.9 2.27 2.27 2.27

RNN-1024-(b) 81.3 85.1 87.6 2.23 2.42 2.54 5.4 6.5 7.1 26.1 26.7 27.8 25.53 25.53 25.54

2 ms

MC-CRN [18] 75.8 78.6 80.1 1.99 2.06 2.14 3.6 4.4 4.6 3.5 3.5 3.6 2.32 2.32 2.32
MC-Conv-TasNet [15] 75.5 79.1 81.8 1.99 2.14 2.25 3.6 4.6 5.2 5.0 5.0 5.1 5.04 5.07 5.13

RNN-300-(a) 74.8 79.0 82.3 1.95 2.11 2.23 3.8 4.7 5.2 2.2 2.2 2.3 2.19 2.19 2.19
RNN-300-(b) 75.4 79.7 82.9 1.96 2.15 2.27 3.8 4.8 5.4 2.4 2.5 2.9 2.26 2.26 2.26

RNN-1024-(b) 80.1 84.2 87.0 2.18 2.37 2.52 5.0 6.2 6.9 26.2 26.7 27.8 25.50 25.50 25.50

1 ms
RNN-300-(a) 73.8 78.2 81.3 1.91 2.07 2.18 3.4 4.4 5.0 2.2 2.2 2.3 2.19 2.19 2.19
RNN-300-(b) 74.5 79.0 81.9 1.92 2.11 2.22 3.6 4.6 5.1 2.4 2.5 2.9 2.26 2.26 2.26

RNN-1024-(b) 79.3 83.3 87.0 2.14 2.31 2.51 4.9 5.9 6.9 26.2 26.7 27.8 25.50 25.50 25.50

All the models are evaluated using short-time objective in-
telligibility (STOI) [37], perceptual evaluation of speech quality
(PESQ) [38] and SNR. The direct-path speech at the first micro-
phone is used as the reference to compute all the metrics. Aver-
age scores over 3.2K test utterances are reported. The amount
of computation is reported in MAC for processing one second
of speech. The Thop1 library in Python is utilized for MAC
computation.

4.3. Baseline Models

We compare the proposed system with existing approaches
to low-latency multichannel speech enhancement. First, we
train a multichannel convolutional time-domain audio separa-
tion network (MC-Conv-TasNet) proposed in [15, 19]. The
best-performing configuration from [25] with a filter length of
32 and stride of 16 is used for separation network. A convo-
lutional layer using filters of length C × 32 with 512 features
followed by layer normalization is used to obtain spatial rep-
resentation, and it is concatenated with the encoder output of
the reference channel before the separator network. The MC-
ConvTasNet is a time-domain model with a latency of 2ms.

Secondly, we train a recently proposed multichannel con-
volutional recurrent network (MC-CRN) for complex spectral
mapping [18]. The network utilizes a dual-window approach to
achieve a small latency of 4ms. It also uses future frame pre-
diction to achieve a latency of 2ms without much drop in the
performance.

4.4. Results

First, we discuss the performance of RNN model, reported in
Table 1, when latency is varied from 1ms to 16ms. In all the ta-
bles, (a) refers to the minimum input context approach (Section
3.1.1) and (b) refers to the fixed window approach with an input
context of 16ms (Section 3.1.2). We observe that a larger input
context obtains consistent improvements over minimum input
context. Additionally, consistent and significant improvements
are obtained with a larger latency for both (a) and (b). For exam-
ple, STOI scores are respectively improved by 4.1, 2.5, and 2.3
for 2-channel, 4-channel and 8-channel models when latency is
increased from 1ms to 16ms using approach (b). In summary,
we are able to provide a latency vs performance trade-off by
changing just one parameter L that decides the values of iW
and oW (see Section 3.1) for both (a) and (b).

1https://pypi.org/project/thop/

Next, we provide a performance vs number of computation
and parameters trade-off by fixing the algorithmic latency to
2ms and varying H from a small value of 64 to a large value of
1024. Results are given in Table 2. We notice that the smallest
model (H = 64) takes around 120 Mega (M) MACs to process
one second of speech with 8 channels. It can improve the STOI
by 11.4, PESQ by 0.33 and SNR by 9.6 by using only 105K
parameters. We also notice that (b) obtains consistent improve-
ment over (a) for all H with a slight increase in the number
of computations and parameters. The biggest 8-channel model
with H = 1024 can obtain impressive improvements of 28.8 in
STOI, 1.1 in PESQ and 13.8 in SNR with a small algorithmic
latency of 2ms by using a compute of 25G with 25M parame-
ters. The results in Table 1 and Table 2 illustrate that the pro-
posed framework is general enough to be employed for a wide
range of resource constraints.

Finally, we compare the proposed model with baseline
models in Table 3. We use H = 300 to make the number of
parameters comparable to that of MC-CRN. For the latency of
4ms, RNN-300-(b) model obtains superior performance than
MC-CRN for 4-channel and 8-channel models while using a
much smaller amount of computations. It is similar in SNR and
PESQ but slightly worse in STOI for the 2-channel case. For
the latency of 2ms, RNN-300-(b) models is similar or better
than the stronger baseline model MC-Conv-TasNet, while us-
ing much smaller number of parameters and computations. We
also notice that RNN-300-(b) with a latency 1ms matches to the
performance of MC-Conv-TasNet with latency 2ms for the case
of 4 and 8 channels. We also present result for RNN-1024-(b)
to highlight that the performance can be significantly improved
even for smaller latencies, such as 1ms and 2ms, by increasing
the number of parameters and computations.

5. Conclusions

We have proposed a simple RNN model for the task of joint
denoising and dereverberation in the time domain. The model
can operate with an ultra small algorithmic latency and is also
efficient in terms of run-time memory and computation. It is
competitive with existing approaches to low-latency speech en-
hancement while using a much smaller amount of computation
and parameters. Additionally, we have trained it for a wide
range of resource constraints, demonstrating that it is suitable
for multiple applications with different resource requirements.

2481

6. References
[1] S. Gannot, E. Vincent, S. Markovich-Golan, and A. Ozerov, “A

consolidated perspective on multimicrophone speech enhance-
ment and source separation,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, pp. 692–730, 2017.

[2] H. Erdogan, J. R. Hershey, S. Watanabe, M. I. Mandel, and
J. Le Roux, “Improved MVDR beamforming using single-channel
mask prediction networks,” in INTERSPEECH, 2016, pp. 1981–
1985.

[3] J. Heymann, L. Drude, and R. Haeb-Umbach, “Neural network
based spectral mask estimation for acoustic beamforming,” in
ICASSP, 2016, pp. 196–200.

[4] Z.-Q. Wang, J. Le Roux, and J. R. Hershey, “Multi-channel deep
clustering: Discriminative spectral and spatial embeddings for
speaker-independent speech separation,” in ICASSP, 2018, pp. 1–
5.

[5] Z.-Q. Wang and D. Wang, “Combining spectral and spatial
features for deep learning based blind speaker separation,”
IEEE/ACM Transactions on Audio, Speech, and Language Pro-
cessing, pp. 457–468, 2018.

[6] S.-W. Fu, T.-y. Hu, Y. Tsao, and X. Lu, “Complex spectrogram
enhancement by convolutional neural network with multi-metrics
learning,” in Workshop on Machine Learning for Signal Process-
ing, 2017, pp. 1–6.

[7] B. Tolooshams, R. Giri, A. H. Song, U. Isik, and A. Kr-
ishnaswamy, “Channel-attention dense U-Net for multichannel
speech enhancement,” in ICASSP, 2020, pp. 836–840.

[8] K. Tan, Z.-Q. Wang, and D. Wang, “Neural spectrospatial filter-
ing,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 30, pp. 605–621, 2022.

[9] A. Pandey, B. Xu, A. Kumar, J. Donley, P. Calamia, and D. L.
Wang, “Multichannel speech enhancement without beamform-
ing,” in ICASSP, 2022, pp. 6502–6506.

[10] J. Liu and X. Zhang, “DRC-NET: Densely connected recur-
rent convolutional neural network for speech dereverberation,” in
ICASSP 2022 - 2022 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), 2022, pp. 166–170.

[11] D. Lee and J.-W. Choi, “DeFT-AN: Dense frequency-time atten-
tive network for multichannel speech enhancement,” IEEE Signal
Processing Letters, vol. 30, pp. 155–159, 2023.

[12] S. Fu, Y. Tsao, X. Lu, and H. Kawai, “Raw waveform-based
speech enhancement by fully convolutional networks,” in Asia-
Pacific Signal and Information Processing Association Annual
Summit and Conference, 2017, pp. 006–012.

[13] C.-L. Liu, S.-W. Fu, Y.-J. Li, J.-W. Huang, H.-M. Wang, and
Y. Tsao, “Multichannel speech enhancement by raw waveform-
mapping using fully convolutional networks,” IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing, pp. 1888–
1900, 2020.

[14] Y. Luo, Z. Chen, N. Mesgarani, and T. Yoshioka, “End-to-end mi-
crophone permutation and number invariant multi-channel speech
separation,” in ICASSP, 2020, pp. 6394–6398.

[15] J. Zhang, C. Zorilă, R. Doddipatla, and J. Barker, “On end-to-
end multi-channel time domain speech separation in reverberant
environments,” in ICASSP, 2020, pp. 6389–6393.

[16] A. Pandey, B. Xu, A. Kumar, J. Donley, P. Calamia, and D. L.
Wang, “TPARN: Triple-path attentive recurrent network for time-
domain multichannel speech enhancement,” in ICASSP, 2022, pp.
6497–6501.

[17] ——, “Time-domain ad-hoc array speech enhancement using a
triple-path network,” in INTERSPEECH, 2022, pp. 729–733.

[18] Z.-Q. Wang, G. Wichern, S. Watanabe, and J. Le Roux, “STFT-
domain neural speech enhancement with very low algorithmic la-
tency,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 31, pp. 397–410, 2022.

[19] Z. Tu, J. Zhang, N. Ma, J. Barker et al., “A two-stage end-to-end
system for speech-in-noise hearing aid processing,” Proc. Clarity,
pp. 3–5, 2021.

[20] C. Haruta and N. Ono, “A low-computational dnn-based speech
enhancement for hearing aids based on element selection,” in Eu-
ropean Signal Processing Conference, 2021, pp. 1025–1029.

[21] K. Tan and D. Wang, “Towards model compression for deep learn-
ing based speech enhancement,” IEEE/ACM transactions on au-
dio, speech, and language processing, vol. 29, pp. 1785–1794,
2021.

[22] L. Lee, Y. Ji, M. Lee, M.-S. Choi, and N. Coporation, “DEMUCS-
Mobile: On-device lightweight speech enhancement.” in Inter-
speech, 2021, pp. 2711–2715.

[23] Y. Luo, C. Han, and N. Mesgarani, “Ultra-lightweight speech sep-
aration via group communication,” in ICASSP, 2021, pp. 16–20.

[24] A. Pandey and D. L. Wang, “TCNN: Temporal convolutional neu-
ral network for real-time speech enhancement in the time do-
main,” in ICASSP, 2019, pp. 6875–6879.

[25] Y. Luo and N. Mesgarani, “Conv-TasNet: Surpassing ideal time-
frequency magnitude masking for speech separation,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, pp.
1256–1266, 2019.

[26] A. Pandey and D. Wang, “Dense CNN with self-attention for time-
domain speech enhancement,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, pp. 1270–1279, 2021.

[27] ——, “Self-attending RNN for speech enhancement to improve
cross-corpus generalization,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 30, pp. 1374–1385, 2022.

[28] H. Zhang, A. Pandey, and D. L. Wang, “Low-latency active noise
control using attentive recurrent network,” IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing, vol. 31, pp.
1114–1123, 2023.

[29] A. Pandey and D. L. Wang, “On cross-corpus generalization of
deep learning based speech enhancement,” IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing, in press, 2020.

[30] ——, “Learning complex spectral mapping for speech enhance-
ment with improved cross-corpus generalization,” in INTER-
SPEECH, 2020, p. in press.

[31] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,”
arXiv:1607.06450, 2016.

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,”
in ICCV, 2015, pp. 1026–1034.

[33] F. Gao, L. Wu, L. Zhao, T. Qin, X. Cheng, and T.-Y. Liu, “Efficient
sequence learning with group recurrent networks,” in Proceedings
of the Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers), 2018, pp. 799–808.

[34] K. Tan and D. L. Wang, “Learning complex spectral mapping
with gated convolutional recurrent networks for monaural speech
enhancement,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 28, pp. 380–390, 2019.

[35] C. K. Reddy, V. Gopal, R. Cutler, E. Beyrami, R. Cheng,
H. Dubey, S. Matusevych, R. Aichner, A. Aazami, S. Braun et al.,
“The INTERSPEECH 2020 deep noise suppression challenge:
Datasets, subjective testing framework, and challenge results,” in
INTERSPEECH, pp. 2492–2496.

[36] D. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in ICLR, 2015.

[37] C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen, “An al-
gorithm for intelligibility prediction of time–frequency weighted
noisy speech,” IEEE Transactions on Audio, Speech, and Lan-
guage Processing, pp. 2125–2136, 2011.

[38] A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hekstra, “Per-
ceptual evaluation of speech quality (PESQ) - a new method for
speech quality assessment of telephone networks and codecs,” in
ICASSP, 2001, pp. 749–752.

2482

