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Abstract
This paper investigates the perceptual significance of the devi-
ation in obstruents previously observed in WaveNet vocoders.
The study involved presenting stimuli of varying lengths to 128
participants, who were asked to identify whether each stimulus
was produced by a human or a machine. The participants’ re-
sponses were captured using a 2-alternative forced choice task.
The study found that while the length of the stimuli did not
reliably affect participants’ accuracy in the task, the concen-
tration of obstruents did have a significant effect. Participants
were consistently more accurate in identifying WaveNet stimuli
as machine when the phrases were obstruent-rich. These find-
ings show that the deviation in obstruents reported in WaveNet
voices is perceivable by human listeners. The test protocol may
be of wider utility in TTS.
Index Terms: WaveNet, obstruents, TTS evaluation, percep-
tion, distortion

1. Introduction
Human-likeness is one of the primary and longstanding goals
for Text-To-Speech (TTS) synthesizers. Voice is an indispens-
able medium of communication and social exchange in human
communities, and contains rich information in addition to the
intended message. Our reliance on spoken language explains
the many findings where human, or human-like, voices are con-
sistently rated as more socially acceptable [1], pleasant [2] and
trustworthy [3]. Recent work also shows that while the phe-
nomenon of the uncanny valley holds true for visual stimuli, the
likeability of speech stimuli increases with human-likeness [4].
Thus it is important to assess the human-likeness of synthetic
voices.

In targeted applications of TTS, the concept of human-
likeness is closely linked with naturalness, which is a widely
tested attribute in TTS evaluation. For example, in the Bliz-
zard Challenge series1, where the purpose is to compare TTS
techniques through a common evaluation platform, the word
“natural” is implicitly used to refer to the original human voice.
However, the question of naturalness, presented usually as “how
natural does this utterance sound?”, has been considered “neb-
ulous” [5], or “poorly defined” [6], as it relies on listeners’ own
interpretation of naturalness. As a consequence, naturalness rat-
ings can differ with context [7, 8], application specific expecta-
tions [9], instructions to listeners [10] and interaction condi-
tions [11]. The question of human-likeness, on the other hand,
is more precise, and can thus offer more diagnostic information
about system-weakness, especially in applications where natu-
ralness and human-likeness are linked.

1http://festvox.org/blizzard/

While these studies establish the importance of studying
human-likeness of speech synthesizers, an evaluation frame-
work also plays a major role. In ASVSpoof[12] settings, al-
though the question of human-likeness is straightforward, the
utterance is presented as a whole. This limits its diagnostic
abilities, because the exact source of perceivable distortion is
unclear. Perceptual judgments are commonly assumed to in-
crease in accuracy, as sensory input accumulates[13]. On the
other hand, judgements for speech stimuli are found to be more
variable with limited, or shorter input[14, 15]. This suggests
that the longer the exposure to a stimulus, the more accurate or
consistent a participant becomes in their response. Therefore,
in this paper, we design a test of human-likeness as a function
of length of the stimulus. This gives us the first research ques-
tion explored in this paper: does the accuracy of judgment of
human-likeness increase with the length of the stimulus?

Recent work on the segmental evaluation of WaveNet
voices [16] showed that their voiceless obstruents deviate
strongly from the human voice, in most of their contrastive fea-
tures. Features of voiced obstruents and vowels were shown to
be more similar to the human voice. Since the autoregressive
nature of WaveNet vocoders was a potential cause for this de-
viation, it may be extrapolated that characteristics of sonorant
consonants may be well reproduced by WaveNet vocoders. The
perceptual significance of this deviation was not established.
Contrastive features encode information that is phonemically
meaningful, and human listeners (at least, native speakers) may
be attuned to expect them in human-like speech. If this devi-
ation is perceivable, then obstruent-rich utterances should pro-
vide more clues as to whether a stimulus is human or from a
machine. On the other hand, if the phrase contains more non-
obstruents, or is sonorant-rich, then the clues should be weaker.
Hence, we pose our second research question: does accuracy
of judgment of human-likeness increase more with the length of
the stimulus when the utterance is obstruent-rich?

In Section 2, we describe the experimental details, detailing
stimuli creation and their presentation to participants. Section 3
describes the results of our experiments, demonstrating the ef-
fect of increasing stimulus length in a) randomly selected, or b)
specially selected obstruent or sonorant-rich utterances. Section
4 presents a discussion on the important observations, and the
relevance of these findings to other fields of speech perception
and technology. Section 5 concludes the paper.

2. Experimental Design
2.1. Description of dataset

The source material for our study comes from the recently ex-
tended [17] Blizzard Challenge 2013 (BC-2013) [18] corpus.
The human voice in the original challenge came from audio-
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book renditions by an American, female voice artist. All partic-
ipating teams had to develop their own TTS systems based on
this human voice as a common training data. However, no team
had used neural TTS in 2013. The extended version [17] con-
tributes 4 neural voices, which are trained on the same human
speaker as in the original challenge. Tacotron [19] and FastPitch
[20] were used as acoustic models for mel-spectrogram gener-
ation, and WaveNet [21] and WaveGAN [22] as vocoders for
waveform-generation. Since the previous findings of voiceless
obstruent deviation [16] were limited to WaveNet, we only se-
lected two of the neural voices for experiments presented in this
paper: FastPitch WaveNet (System Y), and Tacotron WaveNet
(System Z), along with the human voice.

All our stimuli were derived from the 100 utterances that
originally formed the test corpus in both the original and ex-
tended versions of BC-2013. The next subsection explains the
design and creation of the stimuli and presentation strategy.

2.2. Phrase extraction: text and audio

We developed a refined set of audio stimuli from the 100 utter-
ances by taking the following aspects into consideration:-

Grammatical well-formedness:- First, we divided each
utterance into its constituent phrases using the Stanford NLP
parser. The grammatical well-formedness of the resultant
phrases (e.g. a noun phrase “big, solemn oaks”, instead of a
roughly cut up “before but she”) ensured that our participants
could focus only on the audio. All duplicates were removed.

Phrase length:- This was determined in terms of the num-
ber of syllables per phrase. We only preserved unique phrases
of 2, 4, 8, 16, and 32 syllables to maintain a sufficiently per-
ceivable “doubling” of their lengths. The number of phrases
selected at each length is described in Table 1, as is the dis-
tribution of the stimuli between human and the two WaveNet
systems. A total of 124 phrases was heard by each participant.

Phrase length
(in #syllables) #phrases Human FastPitch (Y) Tacotron (Z) Total phrases

2 64 32 16 16
4 32 16 8 8
8 16 8 4 4 124
16 8 4 2 2
32 4 2 1 1

Total 124 62 31 31

Table 1: Number of phrases at each phrase-length heard by
each participant across the human voice, and systems Y and Z.

Audio extraction:- The corresponding audio for the se-
lected phrases was extracted from System Y, System Z and the
human voice, and hand-corrected for phrases boundaries. Ad-
ditionally, a fade of 50 ms was also added before and after each
utterance, to minimise any audible clicks. The sampling rate
was 44.1 kHz, bitrate 320 kbps, and the format was .mp3. A
high bitrate of 320 kbps is maintained [23] to ensure that the
recording format does not influence our results.

2.3. Experimental conditions and groups

As shown in Table 1, each participant evaluated 124 phrases.
First, 62 human stimuli were extracted, in accordance with the
phrase distribution in Table 1. These were maintained identi-
cally throughout the experiments. Synthetic stimuli were ex-
tracted based on one of the two conditions now described.

The baseline condition:- 62 synthetically produced stim-
uli of the required phrase length were selected randomly, with
no particular constraints on their lexical content. This condi-

tion was designed for the first research question, in Section 1,
relating to length.

The ObSon condition:- Each unique phrase among the
well-formed phrases was assigned a score, based on the ob-
struent or sonorant concentration in its lexical content. Based
on this score, phrases were categorized as obstruent-rich, or
sonorant-rich2. Of the required 62 synthetic phrases, we se-
lected 31 obstruent-rich phrases (OBS-P), and 31 sonorant-rich
phrases (SON-P). This condition was designed for the second
research question in Section 1. Based on previous work [16],
we expected the obstruent-rich stimuli to increase the accuracy
of the human-or-machine responses.

The ObSon condition required us to also confirm whether
the effect we hypothesized was truly an effect of obstruent-
richness, and not that of a specific type of TTS system. In other
words, we wanted to examine if this effect was consistent across
both the acoustic models. Therefore, we designed our stimuli
such that, for one group of participants, we retained those OBS-
P which were produced by FastPitch (Y) and SON-P produced
by Tacotron (Z). Then for another group, these pairings were
reversed. To maintain consistency between the two conditions,
we also split the baseline stimuli equally, and paired them al-
ternately with each of the acoustic models. But this split was
completely arbitrary. The details of the individual participant
groups are described in Table 2. Participants were assigned to
one of the 4 groups listed. No participant was repeated in any
group. Their details are described in the next section.

Participant group FastPitch (Y) Tacotron (Z) Human

Baseline Group1 R1-P R2-P HM-P
Baseline Group2 R2-P R1-P HM-P
ObSon Group1 SON-P OBS-P HM-P
ObSon Group2 OBS-P SON-P HM-P

Table 2: Phrases paired with acoustic model for each group.
R1-P, R2-P = Random Phrases 1, Random Phrases 2 . OBS-P
= Obstruent-rich phrases; SON-P = Sonorant-rich phrases.

2.4. Participant details

We recruited 128 participants (32participants x 2condition x
2group) through Prolific. Gender balance was maintained for
each group. All participants were native speakers of English
(UK or US English speakers, only), and reported no history of
hearing impairment. Their informed consent was obtained prior
to the experiment, and the following demographic information
was collected: a) age, b) sex at birth, c) speaker of UK or US
English, d) experience with Alexa or other TTS devices, and e)
professional experience in speech/audio processing. The me-
dian time for completion was 25 minutes, and their remunera-
tion rate was 7 GBP/hour.

2.5. Presentation of the stimuli

The stimuli were presented in a random order, to remove any
effect of sequencing on length. In every trial, we presented only
one stimulus to the participant, and requested their response to
the question: “Did this sound like a human, or a machine?”.
Stimuli were only played once. Their responses were captured
in a 2-alternative forced choice task: “Human” or “Machine”.
The experiment was designed entirely in Psychopy [24], and

2obstruent-rich: “most self possessed”; sonorant-rich:“meaning in
it.”
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hosted online on the Pavlovia server 3.

3. Results
Listener responses are coded as a binary variable where
0=wrong i.e, the participant was wrong, and 1=correct
i.e, they were correct in their judgment of human or machine.
Figure 1 shows the relationship between stimulus-length
(x-axis) and the predicted probability of the correct response
(PACC ), as a result of a Generalized Linear Model (GLM)
model fit (y-axis). The underlying GLM model is described by
the following model equation:-
CorrectResponse ∼ Number of Syllables,
(family = binomial).

In Figure 1(a), we show the baseline condition, exploring
whether the PACC increases with increasing stimulus-length.
In Figure 1 (b), we show the pattern of response in the ObSon
condition. Here we explore how responses change on the basis
of the concentration of obstruents or sonorants in the lexical
content of the stimuli. If the reported deviation is perceivable
in obstruents, listeners should be more accurate, i.e. show a
further increase in PACC for obstruent-rich phrases.

3.1. The baseline: randomly selected phrases

Figure 1(a) shows that the PACC of the human stimuli have
a consistent positive relationship with the increase in stimulus
length. The GLM model across both groups predicts an over-
all increase of +23% in PACC between stimulus length 2 and
32 [Slope(SE) +1.7(0.32) ,p-val<0.001]. This means that for
human stimuli, across both groups in the baseline, we see an
increase in PACC as the length of the stimulus increases.

In WaveNet stimuli (labelled ”Machine”), Figure 1(a)
shows that PACC either remains constant with stimuli-length,
or shows a slight decrease. When individually evaluated for
every length, we find that although PACC does show some in-
creasing trends upto length 16, the difference is not significant.
However, at stimulus-length 32, we see a statistically significant
lowering in [Slope(SE)–0.084(0.26), p-val<0.01]. At a prelim-
inary level, this may suggests that PACC decreases at length 32.
However, since this was contrary to expectations, we further ex-
plored other factors that may have influenced this behaviour.

3.1.1. Interaction of stimulus-length with other variables

We introduced the following variables as interaction effects
to the underlying model: a) AGE, b) EXPERIENCE with TTS
devices, c) SEX, and d) PHRASE SETS, and e) ACOUSTIC
MODEL. While (a-c) were demographic variables, (d) refers
to R1-P and R2-P (see Section 2.3). The model equation
was: CorrectResponse ∼ Number of Syllables

* InVAR, (family = binomial), where InVAR was
one of (a-e). Between each of these variables, we found clear
effects of (d) PHRASE SETS to be the most consistent effects
among both groups of the baseline. This means that even though
the phrases were randomly selected, we can see consistent drops
in accuracy in one set of phrases over the other in both groups.
The interaction between stimulus-length and R2-P shows a sta-
tistically significant lowering of accuracy as length increases
[Slope(SE)-1.27(0.38), p-val<0.001].

This effect, although consistent between both groups, is
stronger for BASELINE GROUP1, where R2-P is produced by
Tacotron. This means that when linguistic content is maintained

3https://pavlovia.org/

identically, Tacotron produced voices are harder to tell apart
from the human voice. Further analysis on the linguistic content
of the phrases in R2-P, reveals that even though the selection
was completely random, this set has a relatively lower concen-
tration of voiceless obstruents, particularly in stressed syllables.
Taken together, these observations may indicate listeners’ pref-
erence towards the voice produced by Tacotron WaveNet.

3.2. The ObSon: obstruent-rich vs sonorant-rich phrases

As in the baseline condition, in Figure 1(b) we see that the
PACC of the human stimuli increases with increase in stimu-
lus length overall. The GLM model across both groups predicts
an overall increase of +19% in PACC between stimulus length
2 and 32 [Slope(SE) +1.19(0.28), p-val<0.001]. Therefore, in
both baseline and the ObSon condition, participant responses
become more accurate for human stimuli as the length of the
stimulus increases.

For WaveNet stimuli, it can be clearly seen in Figure 1(b)
that the obstruent-rich stimuli rise faster and reach higher
values of PACC in both groups. This indicates that the de-
viation in WaveNet obstruents, first reported in [16], is per-
ceptible and contributes to the perceived machine-likeness of
WaveNet stimuli. Combined over both groups, the PACC shows
a strongly significant rise of +32% between stimulus length 2
and 32 [Slope(SE) +1.5(0.34) ,p-val<0.001], when the stimuli
are obstruent-rich. This effect is stronger in Group II, where
sonorant-rich stimuli are produced by Tacotron.

3.2.1. Interaction of stimulus-length with other variables

The underlying model was modified as described in Sec-
tion 3.1.1. The other variables were the same as above, except
that (d) PHRASE SET was composed of OBS-P and SON-P.
An interaction between stimulus-length and the PHRASE SET
showed consistent trends among both groups. While SON-P
phrases lower the PACC in all lengths, the effect is most signifi-
cant at stimulus-length 16. The PACC for OBS-P is 0.54, while
that of SON-P is 0.35. This 20% lowering of the PACC , indi-
cates that the largest perceivable difference in human-likeness
between OBS-P and SON-P occurs at stimulus-length 16.
However, a deeper analysis, especially which accounts for de-
mographic variables, will be required before confirming and re-
producing this result on stimulus-length.

4. Discussion
We have analyzed the effect of increasing stimulus length on
listeners’ judgement in a 2-alternative forced choice task of de-
tecting human vs machine. Listener accuracy was expected
to increase with increasing length, because longer exposure to
stimuli has been shown to increase participants’ consistency
and accuracy in tasks [15, 14] In judging the human-likeness
of speech samples, our participants grew steadily more ac-
curate with increasing length, when the stimulus was human
speech or obstruent-rich synthetic speech from the WaveNet
vocoder. When the stimuli were sonorant-rich synthetic speech,
their length had a smaller (ObSon-Group1) or a negative effect
(ObSon-Group2), compared to obstruent-rich utterances.

Previous work on spoofing detection has demonstrated the
realism of synthetic voices, and has been rated as indistinguish-
able from human speech [12] in many listening conditions [25].
In our study, we find that stimuli accumulation, i.e, longer utter-
ances, nudge the participant responses more towards its human-
likeness. However, in the presence of segmental distortion, par-
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(a) Baseline: randomly selected utterances
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Figure 1: A GLM-model fit between predicted probability of correct responses (0=incorrect, 1=correct) and increasing stimulus-
length for human and machine-generated sentences (a). In (b), machine sentences further divided into obstruent- and sonorant-rich.
Responses obtained from a 2-AFC task where “human” or ”machine” judgements are made on audio stimuli. HM:Human, MN:Machine,
TC:Tacotron, FP:FastPitch, OBS:Obstruent-rich, SON:Sonorant-rich

ticipants determine the machine-likeness more accurately. This
is also in line with previous research, where segmental dis-
tortion has pointed to higher-level attributes like naturalness
and system-preferences [26]. It must be noted, however, that
more variance can be seen in participant responses for synthetic
speech. A potential reason is the imbalance between short and
long utterances. This is a limitation of the dataset, as natu-
rally occurring corpora do not contain utterances that are neatly
balanced for obstruent/sonorant-richness, unless specially de-
signed. In future work, it will be useful to redesign these exper-
iments, with equal numbers of long and short stimuli, which are
not “cut-outs” from running speech.

A second observation from our study is that Tacotron voices
showed reduced accuracy in both conditions. Participants were
better at detecting machine-likeness in FastPitch utterances. A
potential explanation is that the Tacotron-WaveNet combination
is auto-regressive both in the acoustic model and the vocoder
[19, 21]. Therefore, it is possible that sonorants, which are char-
acterised by vowel-like resonances, are faithfully reproduced.
This perceivable difference between the synthesizers points to
a limitation of a subjective listening test: both systems in [17]
had obtained an identical MOS score of 4 in the source paper.

The perceptual significance of deviating obstruents in
WaveNet systems has implications for multiple fields. First, it
may motivate TTS engineers to focus on segmental attributes
of a system, or even perform a post-processing of their au-
dio. For example, [27] demonstrate that the use of WaveNet
vocoders with distinct periodic/aperiodic decomposition, scores
higher naturalness. From a TTS evaluation perspective, the test
methodology presented may offer a more fine-grained insight

into localizing the source and perceptual significance of distor-
tion, compared to traditional, MOS-based listening tests. Fi-
nally, if segmental characteristics of sonorants are indeed indis-
tinguishable from human speech, then analysis of synthetically
produced sonorants may generalize well to human speech. This
could accelerate research in phonetics, because of the reduced
reliance on speech data collection.

5. Conclusion
In this paper, we explore whether accuracy of detecting human-
likeness increases with increase in length of stimuli. We also in-
vestigate whether the segmental distortion, previously reported
for obstruents in WaveNet, is perceivable by listeners, and in-
creases their accuracy of human vs machine detection.

The central finding here is that accuracy in detecting
obstruent-rich phrases consistently improves with longer stim-
uli. This shows that human listeners can perceive segmental
distortion in high-quality neural TTS synthesizers. We also
found that Tacotron voices were judged to be human more fre-
quently than FastPitch voices, contrary to their previously re-
ported equivalence in MOS based evaluations. These findings
show that MOS-based evaluations are not sufficiently diagnos-
tic, and assert a greater need in better methodologies for neural
TTS evaluation.
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