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Abstract
Acoustic Echo Cancellation (AEC) is critical for accurate

recognition of speech directed at a smart device playing audio.
Previous work has showed that neural AEC models can sig-
nificantly improve Automatic Speech Recognition (ASR) ac-
curacy. In this paper, we train a conformer-based waveform-
domain neural model to perform residual acoustic echo suppres-
sion (RAES) on the output of a linear AEC. We focus specifi-
cally on improving ASR accuracy in realistic mismatched test
conditions, when training on large-scale simulated training data,
as needed for production voice-interaction systems. Our key
finding is that instead of naively using the best evaluation-time
linear AEC configuration during neural RAES model training,
using a weaker linear AEC generalizes significantly better, with
17-30% lower word error rate (WER) on a realistic re-recorded
test set. Overall, the neural RAES model yields 38-53% WER
reduction over the linear AEC alone.
Index Terms: Acoustic Echo Cancellation, Waveform Neural
AEC, Residual Echo Suppression, TasNet, ASR

1. Introduction
Acoustic Echo Cancellation (AEC) is an essential algorithm
used to enhance the speech input to smart speakers that are play-
ing audio such as text-to-speech (TTS) responses, audiobooks
or music. The digital assistant typically performs keyword spot-
ting or ASR only on the enhanced speech output by the AEC.
Conventional AEC systems typically estimate a linear filter be-
tween the playback reference signal and the received echo at the
microphone [1], and are quite effective at improving the signal-
to-interference ratio of the speech input.

Residual echo in the linear AEC output can significantly
hinder speech and hotword recognition, particularly at higher
playback volumes and when the playback audio is predomi-
nantly speech (e.g., TTS, podcasts). Residual echo could be
due to non-linearities in the device loudspeaker, long room re-
verberation times, or the speaker moving. Several neural net-
work based methods have recently been proposed for AEC and
residual echo suppression, with architectures based on LSTMs,
dilated convolutions, attention networks, U-Nets and others
[2–14]. However, almost all of these approaches are focused
on optimizing and improving speech enhancement and quality
metrics, which are not matched with our goal of ASR.

Recently there has been more work focused on neural AEC
for speech or hotword recognition [15–17]. In [15], an LSTM-
based neural AEC model was proposed, taking microphone and
reference logmel features as input and predicting enhanced log-
mel features. A novel auxiliary ASR loss, defined as the L2 loss
between ASR encoder output representations computed from
target and predicted logmel features, was shown to reduce ASR

WER by 12-17%. In [16], a very similar ASR loss was used to
improve WER by 9-11% with slight degradation in speech qual-
ity, for a neural model operating as a residual echo suppressor
in a fullband AEC system. In [17], temporal convolution net-
works with input mixture and reference features, and predicting
posteriors for keyword spotting or device directed speech detec-
tion, were shown to be more parameter efficient than predicting
enhanced features. However this implicit AEC approach is nar-
rowly focused on and tied to the tasks of interest.

In [18], a waveform-domain neural AEC model optimized
for ASR was presented, with an architecture inspired by the
TasNet model [19], and using conformer layers [20] for the en-
hancement mask estimation. One advantage of a waveform-
domain model is that the same model can potentially be used
for different applications like ASR and hotword by including
corresponding auxiliary loss functions. The model in [18] was
trained on a large speech dataset simulated with both synthetic
and real echoes as interference, and the auxiliary ASR loss
from [15] was shown to be effective in improving WER. By cas-
cading the waveform-domain neural AEC model after a linear
adaptive AEC system, significant WER reductions of 56-59%
over the linear AEC alone were demonstrated on a realistic re-
recorded test set, although the systems were not trained jointly.

Motivated by the work in [18], the current work proposes
neural residual acoustic echo suppression (RAES) in the wave-
form domain, by training the model on the output of the linear
AEC instead of the microphone signal, keeping the playback
reference as an auxiliary input. Unlike conventional approaches
that train the RAES model using linear AEC settings that are
found to be optimal in test conditions, we find that using a
weaker linear AEC system during training is key for better gen-
eralization and performance on mismatched test sets. On a real-
istic re-recorded test set, evaluating with a state-of-the-art ASR
model that includes an endpointer optimized for latency [21],
the proposed training for neural RAES models using a weaker
linear AEC gives 17-30% word error rate (WER) reduction over
using a strong linear AEC during training, and 38-53% WER
reduction over the linear AEC alone.

The rest of the paper is organized as follows. Section 2
briefly discusses related work. In Section 3, the architecture and
training loss of the proposed waveform-domain neural RAES
model are described. In Section 4, the experimental setup in-
cluding training and evaluation data are described. Experimen-
tal results and ablations are presented in Section 5, and conclu-
sions and ideas for future work in Section 6.

2. Related Work
In [6], a Conv-TasNet model trained on input reference and lin-
ear AEC output was proposed for residual echo suppression.
In [8], EchoFilter, a TasNet-style masking neural AEC model
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using attention and LSTM modules was proposed, that included
an auxiliary double-talk detection network. In [5], a neural
RAES model consisting of a contextual attention module be-
tween recurrent encoder and decoder layers was proposed, tak-
ing log-spectra of mixture, reference and output error signal of
the linear AEC as inputs. As mentioned above, these neural
models were optimized only for enhancement and speech qual-
ity, unlike our model which targets ASR accuracy.

The ICASSP 2022 AEC challenge [22] included ASR ac-
curacy as an evaluation metric and has stimulated relevant re-
search. In [23], a gated convolutional F-T-LSTM neural net-
work post-filter was trained after a linear AEC, and trained with
an echo-aware loss and using double-talk detection as an auxil-
iary task. In NeuralEcho [24], a fully neural 2-stage AEC sys-
tem using attention based recurrent neural networks was devel-
oped for joint echo and noise suppression, also potentially in-
corporating speaker-aware enhancement and AGC. In [25], a 2-
stage neural model was proposed, consisting of a multi-channel
AEC and a joint AEC-beamformer performing double-talk de-
tection. Both [24] and [25] used 2nd order statistics such as
cross-correlation between microphone and reference signals as
input. In [26], a conformer-based front-end operating on logmel
features was developed to jointly handle AEC, multi-channel
enhancement and ID-based speaker separation.

This paper, to the best of our knowledge, is the first to op-
timize a conformer-based waveform-domain RAES model for
ASR accuracy, and to address the important issue of general-
ization to mismatched test data by analyzing how the training
time configuration of linear AEC affects evaluation time ASR
quality.

3. Waveform-domain Neural RAES Model
3.1. Model Architecture

Figure 1: Cascade of Linear Adaptive AEC and Neural Residual
Acoustic Echo Suppressor (RAES).

Figure 1 shows the block diagram of our system, with the
neural RAES model cascaded after a linear adaptive AEC sys-
tem. The neural model takes the linear AEC output signal
concatenated with the playback reference as input and outputs
enhanced speech that is intended for downstream applications
such as hotword and ASR.

Figure 2: Waveform-domain neural RAES architecture.

Figure 2 shows our proposed architecture for the waveform-
domain neural RAES model, which is the same as that of the
neural AEC in [18], with a simplified figure for clarity. The
model performs enhancement by masking learned features, and
is inspired by TasNet [19]. The input mixture and reference
signals are converted to features by separate 1-D convolution
layers. The mixture (here the linear AEC output) and reference
features are stacked and input into a conformer-based mask es-
timator network which estimates an enhancement mask in the
feature domain. The mask is multiplied with the mixture fea-
tures to produce predicted features, which are converted into
the predicted waveform by the 1-D deconvolution layer. Con-
former layers combine convolutional and transformer layers to
efficiently model both global and local dependencies in audio
signals. Further details on the conformer layers can be found
in [18, 20, 21, 27].

3.2. Loss Functions
The model is trained with a combination of Negative SISNR
loss and the ASR loss proposed in [15]. The front-end that com-
putes logmel features needed for the ASR loss is implemented
as a non-trainable layer that backpropagates gradients from the
ASR loss layer during model training. The total training loss is:

L = −SISNR(s, ŝ) + λLASR (1)

where λ is a hyperparameter. SISNR is defined as the SNR
obtained after scaling the target signal to have least squares error
with the predicted signal. The SISNR formula and derivation
may be found in [19,28]. LASR is defined as an L2 loss between
target and predicted ASR encoder output sequences:

LASR =
∑

k

∥∥∥EASR(Sk)−EASR(Ŝk)
∥∥∥
2

2
(2)

where Sk and Ŝk are feature vectors at frame k computed by the
front-end from the target and predicted signals respectively, and
EASR(·) is the ASR encoder function. For the experiments in
this paper, we used the conformer encoder from the ASR model
described in [21].

4. Experiments
4.1. Training Data
The neural RAES models is trained on target utterances se-
lected from a 50.8k hours dataset consisting of Librispeech [29]
(960 hours), LibriVox1 (46.5k hours), and internal vendor col-
lected datasets (3.3k hours). As recommended in [15,18], target
speech is mixed with both synthetic and real echoes to create
mixture signals at signal-to-echo ratio (SER) between -20 dB
and 5 dB. Real echoes are obtained by rerecording utterances
from Librispeech and internal text-to-speech (TTS) model train-
ing data, on smart speakers from multiple rooms. The second
dataset is chosen since an important use case is to cancel TTS
responses played by the device. For synthetic echoes, utter-
ances from Librispeech and Librivox, and noise snippets from
Getty2 and YouTube Audio Library3 are convolved with syn-
thetic room impulse responses (RIRs), with close microphone
location to mimic device playback. Target speech is also con-
volved with RIRs to simulate farfield conditions.
4.2. Simulated Librispeech Test Set
We use simulated Librispeech test sets created from the Lib-
rispeech test-clean set by artificially adding reverberation and
noise to the target speech utterances, and mixing in held-out re-
recorded echoes at SERs of 5dB, 0dB, -5dB and -10dB. Each

1https://librivox.org
2https://www.gettyimages.com/about-music
3https://youtube.com/audiolibrary
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set contains 2620 utterances with around 52.5k words. Similar
to the training utterances, the associated playback reference is
stored with each test utterance.

4.3. Re-recorded Test Set
We also use a more realistic test set created by re-recording
speech queries played out from a second loudspeaker towards
the device under playback, and also simultaneously capturing
the playback reference. The speech queries were recorded from
three different speaker distances of 1.3m, 3.3m and 5.2m, and
device playback volume setting varied over a range up to the
maximum setting of 10. Each test set utterance has a total
length up to 30 sec, beginning with around 10 sec of echoed
reference only, followed by the target speech query mixed with
interfering echo, and ending with several seconds of continu-
ing echo only. The test set was partitioned based on playback
volume and speaker position into Easy, Moderate and Difficult
sets, containing respectively around 19k, 12.3k, and 11.4k ut-
terances, and around 141k, 92k, and 85k words. This test set
is very challenging in general due to high interfering echo lev-
els, and particularly for the neural AEC/RAES models due to
significant mismatch with the simulated model training data.

4.4. Linear Adaptive AEC
Our Linear AEC system performs subband adaptive filtering us-
ing STFT similar to [30], but uses longer STFT frames (128ms)
and within-band only filters of order 4. These values were cho-
sen based on latency constraints for ASR, and on ASR and hot-
word accuracy on development sets.

Table 1: Linear AEC Parameters, their evaluation-time stronger
values, and weaker values used during Neural RAES training
(see Table 3).

Parameter Eval value Weaker value

FIR Order 4 1
Filter Update Interval 1.5 sec 3 sec
Frame Overlap 75% 50%
Forgetting Factor 0.995 0.98
Alignment Threshold 0.2 0.1
Max Ref-Mic Alignment Lag 550 ms 60 ms
Max Mic Alignment Buffer Length 2000 ms 500 ms
Max Ref Alignment Buffer Length 2000 ms 500 ms

4.5. Weaker linear AEC parameters during model training
As will be reported in Section 5.2, we found that using the same
linear AEC configuration parameters tuned for best test set per-
formance also while training the neural RAES model did not
yield sufficient improvements on the re-recorded test set. We
found that a strategy of making the linear AEC significantly
weaker during training helped the model generalize much bet-
ter to the re-recorded test set. The weaker training settings in-
cluded a predictor filter order of 1 instead of 4, less frequent
filter updates, and shorter alignment search windows between
microphone and reference signals. Table 1 shows the list of lin-
ear AEC parameters and their weaker values during training.

Our hypothesis for the effectiveness of this approach is that
since the re-recorded test set is mismatched with the model
training data, using the strong linear AEC during training likely
results in overfitting. The weaker linear AEC system also re-
sults in larger levels of residual echo, and echo not cancelled for
some portion of the training data due to lack of alignment be-
tween microphone and reference signals. This allows the model
to handle residual echo better when they occur in unseen test
conditions, as is also shown in Section 5.2.

4.6. Waveform-domain Neural RAES
The input signals to the waveform-domain neural RAES model
are framed by the 1-D convolution layers using windows of
length 5ms (80 samples at 16kHz sampling rate), shifted by
2.5ms (40 samples). The learned feature dimension is 128,
which is also the dimension of the 4 conformer layers of the
mask estimator. In our experience, the learned feature dimen-
sion needs to be larger than the window length to get good re-
sults with the TasNet architecture. The convolutional blocks in
the conformer layers use a kernel size of 15, while the causal
attention has 8 heads with a left context of 31 frames. The 1-D
deconvolution layer uses tanh activation to produce audio sam-
ples in the range (−1, 1). The total size of the model is 1.6M
parameters. Given the 31 frames of left-context of the attention
in the four conformer layers, and the frame shift of 2.5ms, the
waveform-domain neural RAES model uses a total past context
of approximately 4× 31× 2.5 = 310ms.

We used the Lingvo toolkit [31] to train models. For the
neural RAES model, the ASR loss weight (λ in Equation 1) was
fixed to be 1e3 for all experiments below. While larger values of
λ do give some WER gains (not reported here), the focus of this
paper is on the choice of linear AEC parameters during RAES
model training, which yields much larger WER gains. During
training, the ASR loss weight is increased linearly, starting from
0.0 at 20k steps to the selected value at 100k steps, and kept
fixed after that.
4.7. ASR Evaluations
We use two different ASR models for evaluations. The
first ASR model is an LSTM RNN-T model [32] trained on
∼400k hours of English speech from domains like VoiceSearch,
YouTube, Telephony and Farfield. The 512-dimensional model
input features are obtained by stacking four successive frames
of 128-dimensional logmel features computed from 32 msec
windows with 10 msec hop, and then subsampling by a factor of
3. Training utterances were anonymized and hand-transcribed,
and the model also uses data augmentations like SpecAug [33]
and simulated noise [34]. For inference with the first ASR
model, we use label-synchronous beam search, with no end-
pointer. The second ASR model is an improved state-of-the-
art conformer-based transducer model [21] trained on the same
datasets and feature front-end as the LSTM RNN-T model
above, and is approximately the same size, with ∼115M pa-
rameters. The conformer encoder has twelve 512-dimensional
layers with masked self-attention using 23 left-context frames.
The model decoding parameters were optimized for both accu-
racy and latency, and endpointer decisions are made using both
an acoustic voice activity detector and an end-to-end end-of-
speech prediction model [35]. Note that the ASR models are
not jointly trained with the AEC model, and are kept frozen
during training and inference.

5. Results
5.1. Results on simulated Librispeech test sets
We first evaluated the different AEC systems on the simulated
Librispeech test sets described in Section 4.2 using the LSTM
RNN-T ASR model described in Section 4.7. This matched test
set was used mainly to sanity-check the implementation.

Table 2: WERs(%) with different AEC/RAES models on simu-
lated Librispeech test subsets at varying SERs.

AEC Method 5 dB 0 dB -5 dB -10 dB

Linear Adaptive AEC 19.1 24.9 26.8 28.8
Waveform Neural AEC [18] 9.8 11.5 15.3 21.9
Linear + Waveform Neural RAES 13.6 14.4 15.5 17.8
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The results of the different AEC / RAES methods on the
simulated Librispeech test sets are presented in Table 2. The
ASR loss weight for the neural AEC model was λ=5e4. It is
seen that both the neural AEC and the linear AEC + neural
RAES cascade perform significantly better than the linear AEC
at all SERs. These test sets are more challenging for the linear
AEC, since the utterances do not begin with a echo-only seg-
ment where the adaptive filter can converge before the mixed
speech starts. The neural AEC seems to work well on matched
data at higher SERs, while the neural RAES model performs
better in lower SER conditions, wherein the residual echo lev-
els are higher. As mentioned above, these results on matched
test data mainly serve to provide a sanity check.

5.2. Results on Re-recorded Test Set with Cascaded System
We next evaluated the proposed waveform-domain neural
RAES model on the more realistic re-recorded test set described
in Sec. 4.3. As mentioned there, unlike the simulated Lib-
rispeech test sets above, this test set is significantly mismatched
with the simulated model training data, but includes an echo-
only segment before the target query for the linear AEC to con-
verge. Hence, while the neural AEC alone performs poorly
(WERs> 100%) on this test set, cascading after the linear AEC
was very effective. On the other hand, the neural RAES model
has been specifically trained to be cascaded with the linear AEC
for precisely this use case of mismatched realistic test data. The
evaluations here used the state-of-the-art Conformer-based ASR
model with endpointer described in Section 4.7.

Table 3: WERs with ASR model with endpointer on re-recorded
test sets, with linear adaptive AEC only, vs. cascade of linear
AEC and neural AEC [18] and RAES (this paper) models.

AEC Method Easy Moderate Difficult

Linear AEC only 14.5 31.0 63.6
Linear + Waveform Neural AEC [18] 10.8 21.5 50.8
Linear + Waveform Neural RAES:

Trained w/ Strong Linear AEC 10.0 20.7 50.0
Trained w/ Weak Linear AEC 8.3 14.5 39.1

WER results on the re-recorded test set are presented in Ta-
ble 3. The challenging nature of the test set is clear from the
poor performance of the linear AEC alone. It is seen that the
cascade of linear AEC and the previously proposed indepen-
dently trained waveform-domain neural AEC model [18] gives
large reductions in WER over the linear AEC alone. In our
first attempt at jointly training a linear AEC + waveform neural
RAES cascade, the strong evaluation-time values (see Table 1)
were used for the linear AEC parameters during training. The
results are shown in the third row, where it is seen that joint
training yields only marginal improvements over [18]. From the
next row of the table, we see that when we instead use a weak
linear AEC system (see Table 1) during training, the linear AEC
+ waveform neural RAES cascade performs significantly bet-
ter than using a strong linear AEC during training, with WER
reductions of 17%, 30% and 22% on the Easy, Moderate and
Difficult test set partitions, respectively.

Overall the linear AEC + waveform neural RAES cascade
gives large ASR accuracy improvements over the linear AEC
alone, with WER reductions of 43%, 53% and 38% on the
Easy, Moderate and Difficult test sets, respectively. Note that
the strong linear AEC system is still used during all evalua-
tions. The results of Sections 5.1 and 5.2 also show that the
neural RAES model generalizes well to different ASR models,
a useful property since the RAES model and the ASR model
can be independently optimized and maintained in a production

setting.

5.3. Ablation experiments with Linear AEC Parameters
We next performed some ablation experiments by taking the
RAES model trained with weak linear AEC in Table 3, and
studying the effect of changing one linear AEC parameter at
a time. For this experiment, since the microphone-reference
alignment lag and buffer lengths are co-dependent, they were
not varied. The WER results are shown in Table 4. Note that
during evaluation only strong linear AEC parameters were used.

Table 4: Ablation experiments with Linear AEC Parameters.
Effect on WERs on re-recorded test sets, by changing one linear
AEC parameter at a time, from a weak value to a strong value
during training (see Table 1).

Linear + Waveform Neural RAES Easy Moderate Difficult

Trained w/ Weak Linear AEC 8.3 14.5 39.1
Change:

FIR Order to 4 10.6 18.5 45.5
Alignment Threshold to 0.2 7.7 14.7 40.0
Forgetting Factor to 0.995 7.9 14.0 38.8
Frame Overlap to 75% 7.7 14.2 37.8
Filter Update Interval to 1.5 sec 7.5 14.2 37.2

Trained w/ Strong Linear AEC 10.0 20.7 50.0

As can be seen from the second row of Table 4, chang-
ing the FIR filter order from 1 to 4 has the most negative im-
pact on WER, and may explain most of the WER gap between
weak and strong linear AEC training parameters. From Ta-
ble 4 we see that strengthening the other parameters one at a
time seems to result in comparable performance, and some-
times even improvement. For example, with all weak linear
AEC parameters except the filter update interval of 1.5 sec,
we obtain 2-10% lower WERs than the all-weak configuration,
25-31% lower WERs than the all-strong configuration, and 41-
54% lower WERs than the linear AEC alone. Changing the
microphone-reference alignment lag and buffer length values in
a tied manner seems likely to yield worse results than the all-
weak configuration, and needs to be studied in future work.

6. Conclusions
In this paper, the problem of training a waveform-domain neural
RAES model for improved ASR was studied, with a particular
focus on generalization to mismatched test sets. The model ar-
chitecture used conformer layers in a Tasnet-style masking ap-
proach, and was trained by jointly optimizing Negative SISNR
and ASR losses on a large speech dataset simulated with both
synthetic and real echoes as interference. A key finding was
that using a weaker instead of a strong linear AEC system dur-
ing the training of the neural RAES model yields significantly
better ASR performance on mismatched test sets. On a real-
istic re-recorded test set, significant reductions in WER of 17-
30% were demonstrated using this training approach. The neu-
ral RAES model gives 38-53% WER reduction over the linear
AEC alone. Future work would include allowing linear AEC
parameters during training to vary randomly over specified dis-
tributions, incorporating double talk detection into the neural
model, and optimizing the model also for hotword accuracy.
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