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Abstract
We present Malafide, a universal adversarial attack against au-
tomatic speaker verification (ASV) spoofing countermeasures
(CMs). By introducing convolutional noise using an optimised
linear time-invariant filter, Malafide attacks can be used to com-
promise CM reliability while preserving other speech attributes
such as quality and the speaker’s voice. In contrast to other
adversarial attacks proposed recently, Malafide filters are op-
timised independently of the input utterance and duration, are
tuned instead to the underlying spoofing attack, and require the
optimisation of only a small number of filter coefficients. Even
so, they degrade CM performance estimates by an order of mag-
nitude, even in black-box settings, and can also be configured
to overcome integrated CM and ASV subsystems. Integrated
solutions that use self-supervised learning CMs, however, are
more robust, under both black-box and white-box settings.
Index Terms: anti-spoofing, adversarial attacks, automatic
speaker verification

1. Introduction
Spoofing, or presentation attacks can be used by a fraudster to
manipulate the behaviour of a biometric recognition system and
hence to gain illegitimate access to protected systems, services
or facilities. Auxiliary sub-systems in the form of countermea-
sures (CMs) are nowadays commonly deployed in order to de-
fend against such attacks and can offer strong levels of protec-
tion [1, 2], including in the case of automatic speaker verifica-
tion (ASV) [3, 4], the focus in this paper. CMs aim to detect
tell-tale signs of spoofing, namely processing artefacts that are
not expected in recordings of bona fide, genuine human speech.

Spoofing and detection research are nonetheless a game of
cat and mouse in which a defender continually adapts to emerg-
ing threats, while an attacker or adversary continually adapts
to the resulting CMs. While threats to ASV have evolved in
the form of ever-more-effective synthetic speech and converted
voice attacks, CMs have largely kept apace [5–7]. New threats
nonetheless continue to emerge.

With defences now commonplace, adversaries can adapt to
conceal the artefacts which might otherwise serve to distinguish
bona fide from spoofed biometric samples; they can devise new
attacks to manipulate not just the biometric classifier, but also
a spoofing CM. Examples of such adversarial attacks have al-
ready emerged [8–13]. Most take the form of additive noise
whereby utterance-specific perturbations are learned and added
to a speech signal. These approaches cannot be implemented
in real time and are sensitive to the specific utterance; the per-
turbations tend to be highly sensitive and even slight distortions
can render the attack ineffective [14, 15].

∗ These authors contributed equally to this work.

In this paper, we propose Malafide, a novel attack designed
for the strength-testing of spoofing and deepfake detection so-
lutions against adversarial, convolutive noise attacks. Malafide
attacks involve the optimisation of a linear time-invariant filter
which is applied to deepfake or spoofed utterances in order to
provoke their misclassification as bona fide utterances. Convo-
lutive noise is independent of an utterance and its duration and
is naturally robust to time-domain shifts, unlike additive adver-
sarial noise. Malafide attacks require the optimisation of only a
small number of filter coefficients, far less than the number of
waveform samples or, equivalently, the number of samples that
would need to be generated in an additive noise attack. They
are also more universal than additive noise attacks in that they
are not optimised for each utterance or speaker, but are instead
optimised for a given spoofing attack, with the latter acting to
ensure they compromise both CM and ASV subsystems. The
attack is optimised offline and can hence be applied in real time.

While attack studies of the nature discussed above can raise
obvious ethical questions, such work is key to the typical ad-
versarial development cycle. Only by continually probing and
strength-testing a given system and by addressing any identified
weaknesses can there be any confidence in its security. This is
the spirit of our work presented in this paper.

2. Relation to prior work
Adversarial attacks, first introduced for image related tasks [16],
have also been studied in the speech domain, e.g. for auto-
matic speech recognition (ASR) [14,17] as well as spoofing and
ASV [8, 9, 11–13, 15]. Early studies [8, 16] explored adversar-
ial examples in the form of additive noise and attack transfer-
ability in black-box scenarios. Typically, these attacks operate
on feature representations, implying that the attacker has corre-
sponding system-level access. This is unlikely in practice and
the attack threat diminishes greatly if time-domain speech sig-
nals are resynthesized from features [12]. Malafide attacks are
applied at the level of raw speech signals in the time domain.

The early approaches consider the generation of utterance-
specific adversarial noise. Again drawing upon inspiration from
studies in image processing [18], universal adversarial perturba-
tions have been adapted to a wide variety of audio tasks, such
as ASR [19], ASV [20], and environmental sound classifica-
tion [21]. Common to these approaches is the generation of
adversarial perturbations by iteratively optimising over several
data points. We adopt a similar approach, but generate adver-
sarial noise that is specific to an underlying spoofing attack.

To the best of our knowledge, the most relevant prior work
is [11], which reports an investigation of universal perturba-
tions against spoofing and deepfake CM systems. This tech-
nique, though, targets the simultaneous manipulation of both
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Figure 1: The Malafide filter training procedure.

CM and ASV subsystems in a manner that is independent to
specific spoofing attacks. So that they compromise the ASV
system, perturbations are also generated for specific speakers,
which adds complexity and precludes their usage on unseen
speakers. Moreover, there is no explicit constraint that acts to
protect speech quality. Our approach differs in that it operates
alongside specific spoofing attacks to augment the threat they
pose to combined CM and ASV subsystems. We assume that
the spoofing attack is sufficient to manipulate the ASV subsys-
tem but, by protecting other speech attributes such as intelli-
gibility, prosody and the speaker’s voice, Malafide attacks act
to compromise both CM and ASV subsystems. Different to all
previous work, our approach involves the learning of an aver-
sarial linear, time-invariant (LTI) filter which can be applied in
real-time to a spoofed utterance through time domain convolu-
tion.

3. Malafide attacks
Let S(a) = {s(a)1 , s

(a)
2 . . . s

(a)
N } be a set of deepfake/spoofed

utterances generated by algorithm a (a particular text-to-speech
or voice conversion algorithm). Spoofed utterances are gener-
ated to manipulate an ASV system so as to increase the like-
lihood of it verifying erroneously claimed identities. Auxil-
iary detection classifiers in the form of CMs are used to defend
against spoofing attacks and hence to protect ASV reliability.
Let CM(u) = s (y | u) be a model that assigns a score y to
utterance u where, by convention, higher scores reflect greater
support for the bona fide class and lower scores greater sup-
port for the spoof class. Ideally, for most spoofed utterances i,
CM(s

(a)
i ) will produce low scores.

Malafide attacks involve the optimisation of a linear time-
invariant (LTI), non-causal filter, the coefficients (tap weights)
of which are optimised to provoke the misclassification of deep-
fake/spoofed utterances as bona fide utterances. The LTI, L-tap
filter m(a) is designed to maximise CM(s

(a)
i ∗ m(a)) (where

∗ denotes convolution). In the case of several different spoof-
ing algorithms a1 . . . aK , an attacker can optimise an equiva-
lent number of filters m(a1) . . .m(aK). The learning of attack-
specific filters is intuitive given that spoofing artefacts are also
attack-specific. The filter should then be tuned to counter the
reliance of the CM upon these same artefacts.

Filter coefficients m(a) can be optimised with conventional
gradient descent using the set of spoofed utterances S(a). The
objective function is given by

max
m(a)

∑

i

CM(s
(a)
i ∗m(a)) (1)

A graphical depiction of the training procedure is shown in Fig-

Figure 2: Impulse (top) and normalised magnitude frequency
(bottom) responses for a Malafide filter optimised for a
RawNet2 CM and A10 spoofing attacks.

ure 1 for two arbitrary spoofing attacks. An L-tap filter is opti-
mised separately for each attack to manipulate the behaviour of
a common CM.

Without constraints, Malafide filtering can cause excessive
speech degradation. For detection settings in the absence of an
ASV system or a human listener (e.g. a standalone CM oper-
ating to detect deepfakes), this may have little consequence.
Where the CM is deployed alongside an ASV system, how-
ever, the filter may act to compromise the CM, but might in-
troduce distortion of sufficient level that the spoofing attack is
no longer successful in compromising the ASV system. Ac-
cordingly, m(a) should be constrained somehow so as to strike
a balance between the maximisation of (1) and the preserva-
tion speech fidelity, e.g. intelligibility, prosody or the speaker’s
voice.

We have found that such a suitable balance can be achieved
by initialising m to resemble a convolutive identity, i.e. an im-
pulse response which exhibits a dominant Dirac (delta) func-
tion. We use He initialization [22] whereby each filter coeffi-
cient is set to some random value sampled from a uniform dis-
tribution r ∼ U(−

√
3/L,

√
3/L). The central coefficient of

m at t = 0 is then set to 1. The filter coefficients are optimised
via gradient descent according to (1) but, to preserve the Dirac
property, the central coefficient is reset to 1 after each filter up-
date derived from a batch. The number of taps, or filter length
L provides an additional level of control over the balance be-
tween the preservation of speech fidelity and the effectiveness
of the attack. Filters with a longer impulse response allow for
greater control or manipulation and hence stronger attacks, but
introduce greater distortion. Shorter impulse responses produce
less distortion, but also weaker attacks.

The impulse response of a 1025-tap Malafide filter opti-
mised for an arbitrarily selected A10 spoofing attack and a
RawNet2 CM is illustrated to the top of Figure 2. The non-
causal filter reflects the Dirac property at t = 0, with lower,
off-centre coefficients. The corresponding normalised magni-
tude frequency response is illustrated on a decibel magnitude,
log frequency scale to the bottom of Figure 2. It shows pro-
nounced attenuation around 450 Hz, 900 Hz, 1.3 kHz, 4 kHz
and 8 kHz, an indication of where the RawNet2 CM sees A10
spoofing artefacts. By suppressing these frequency intervals,
the filter acts to suppress the artefacts which the CM otherwise
uses to distinguish bona fide from spoofed utterances.
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4. Experimental setup
4.1. Protocols and filter optimisation

All experiments were conducted using the ASVspoof 2019 log-
ical access (LA) dataset [23]. It contains spoofing attacks gen-
erated with a set of algorithms labelled A01 to A19. Attacks
A01 to A06 are contained in both the training and development
partitions, while A07 to A19 are contained only in the evalua-
tion partition. Training and development partitions relate to the
realm of a defender whose role is to train and develop spoofing
CMs. The set of three CMs described in Section 4.3 are trained
in the usual way using these two data partitions.

In contrast, the test partition contains data in the realm of
the attacker. Attack-specific filters are hence trained according
to (1) using a subset of the test partition, i.e. using A7 to A19
spoofing attack data. We stress that, in contrast to usual prac-
tice, the use of test data for training purposes is acceptable in
this case; the attacker is not bound by experimental protocols
and can use test data in any reasonable way that is to their ad-
vantage. The test partition is nonetheless split into two parts
which contain an equal number of utterances for each attack.
Attack-specific adversarial filters are then optimised using only
data in Part 1 and tested using data in Part 2.

This re-partitioning allows us to verify the universality of
Malafide attacks, namely the effectiveness or transferability of
the attack to unseen utterances. The setup reflects a scenario in
which filters are trained by an attack offline and then used to
implement online/real-time attacks, e.g. in a logical access or
telephony scenario. While all data partitions contain both bona
fide and spoofed data, Malafide filter optimisation is performed
using spoofed utterances only.

4.2. Implementation

(1) is optimized with Adam [24]. The learning rate and weight
decay are tuned separately for each CM model. Filters are opti-
mised for 15 epochs with a batch size of 14 using data in Part 1
(see Section 4.1). During optimisation of (1), the weights of the
CM model are kept frozen. We explored different filter lengths
L (65, 129, 257, 513, 1025, 2049 and 4097) in order to explore
the balance between optimisation of (1) and the preservation of
speech fidelity (see Section 3).

The filter used for evaluation is selected according to a mea-
sure of the attack success rate for the full set of utterances in
Part 1. The attack success rate is defined as the fraction of
spoofed utterances for which N(CM(s ∗ m)) > 0.5, where
N(·) normalises CM scores to reflect probabilities in [0, 1].
This setting reflects the point at which the CM considers s more
likely to be bona fide than spoofed.1 Our specific implementa-
tion is available as open-source and can be used to reproduce
our results under the same GPU environment.2

4.3. Countermeasures

We used three different CM systems to verify the effectiveness
of the adversarial filter attack. They are described below. All
are available as open-source.

RawNet2 [25], an end-to-end (E2E) model developed origi-
nally for ASV, has also been applied to spoofing and deepfake

1In practice, N(·) is implemented as a Softmax operation applied to
the activations of the final linear layer of each CM model.

2github.com/eurecom-asp/malafide

detection [26].3 The first network layer is a bank of 20 mel-
scaled sinc filters, and is convolved directly with raw waveform
inputs. The sinc-layer is followed by a series of six residual
blocks and a gated recurrent unit (GRU) which produces a score
indicative of whether the input is bona fide or spoofed.

AASIST4 [7] is a state-of-the-art E2E spoofing CM solution
based upon the RawNet2 CM described above. It uses the
same sinc-layer and residual network to extract higher-level fea-
ture representations. The back-end includes a spectro-temporal
graph attention network (RawGAT-ST) [27], heterogeneous
graph attention layers and max graph operations to integrate
temporal and spectral representations. Scores are generated us-
ing a readout operation and a fully connected output layer.

Self-supervised leaning (SSL) based front-ends have gained
increasing attention in a range of speech-related tasks in recent
years, including for spoofing and deepfake detection [28–31].
The SSL-based CM architecture [6]5 is a two-stage model with
SSL-based feature extraction and a back-end comprising graph
attention and pooling layers, a single fully-connected layer and
an output layer. It is the only of the three CMs used in this work
which is trained using external data beyond that permitted by
ASVspoof evaluation rules. Nonetheless, SSL solutions have
improved substantially on the previous state of the art [5,6]. The
SSL feature extractor is a pre-trained wav2vec 2.0 model [32]6

the weights of which are fine-tuned during CM training.

4.4. Metrics

All results are reported as equal error rate (EER) estimates and
are obtained using the standard SASV evaluation protocol [4].
Results reported in Section 5 are CM EERs computed using a
mix of bona fide and spoofed trials. Results reported in Secion 6
are SASV-EERs computed using a mix of target (positive class)
and both non-target and spoofed utterances (negative class).

5. Results
Results are presented in Table 1. They show EERs without and
with the use of different length adversarial filters (column 1).
Results are also shown for filters optimised for one CM (row
1) and tested against another (row 2); column 2 shows EERs
for a filter optimised for, and tested with the AASIST CM (a
white-box setting), whereas column 3 shows EERs for a filter
optimised for the AASIST CM but tested with the RawNet2
CM (a black-box setting).

Results for the three white-box settings shown in
columns 2, 6 and 10 of Table 1 show that adversarial filtering
provokes substantial increases in the CM EER, with the great-
est EERs being achieved with filters of either 513 coefficients
(AASIST and RawNet2) or 1025 coefficiences (SSL). With a
maximum EER of 12.3%, the SSL CM is the most robust. The
most vulnerable is the RawNet2 CM for which the maximum
EER is 22.0%, although it also has the highest initial EER with-
out adversarial filtering of 3.3%.

We now turn to black-box settings. Columns 3 and 4 of
Table 1 show black-box results for filters learned using the AA-
SIST CM. The attack is transferable to the RawNet2 CM (max-
imum EER of 23.9%), but less so to the SSL CM (maximum

3github.com/eurecom-asp/rawnet2-antispoofing
4github.com/clovaai/aasist
5github.com/TakHemlata/SSL_Anti-spoofing
6github.com/pytorch/fairseq/tree/main/

examples/wav2vec/xlsr
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Table 1: CM performance in terms of the EER (%) in both white-box and black-box settings. Results shown without filtering and with
Malafide filtering using filters of different lengths L (number of taps).

AASIST Malafide Attack RawNet2 Malafide Attack SSL Malafide Attack

AASIST RawNet2 SSL AASIST RawNet2 SSL AASIST RawNet2 SSL
Filter length (white-box) (black-box) (black-box) (black-box) (white-box) (black-box) (black-box) (black-box) (white-box)

no filter 0.71 3.29 1.01 0.71 3.29 1.01 0.71 3.29 1.01
65 5.54 8.94 3.63 2.35 15.59 1.76 0.07 10.73 8.33
129 8.15 10.21 1.76 1.57 20.71 1.83 0.04 12.00 9.53
257 9.73 9.72 0.97 1.05 21.46 1.16 0.22 9.53 6.81
513 13.87 11.18 0.19 0.93 21.95 0.97 0.08 11.25 6.98

1025 12.71 15.81 0.15 1.05 21.91 0.19 0.04 10.54 12.30
2049 9.36 23.93 0.26 1.68 16.19 0.12 0.15 8.98 10.91
4097 6.62 19.18 1.80 1.27 11.92 0.12 0.23 8.42 11.15

Table 2: SASV-EER (%) results for the score-level fusion of ASV
and CM sub-systems under Malafide attacks.

CM no filter
Malafide Attack

AASIST RawNet2 SSL
AASIST 1.23 11.21 0.82 0.82
RawNet2 2.62 6.91 6.96 3.99
SSL 1.46 1.46 1.46 1.57

EER of 3.6%). Black-box results for filters learned using the
RawNet2 CM are shown in columns 5 and 7 of Table 1. The at-
tack is still effective for both AASIST and SSL CMs, with max-
imum EERs of approximately 2% for relatively shorter length
filters. Black-box results for the SSL CM shown in columns 8
and 9 of Table 1 show that the attack transfers to the RawNet2
CM (EER as high as 12%) but not to the AASIST CM, for
which the attack is wholly unsuccessful. All CMs are vulnera-
ble to adversarial filtering attacks under white-box settings and,
albeit to a lesser extent, also black-box settings. The RawNet2
CM is particularly vulnerable across all conditions.

6. Impact upon ASV
Results presented thus far show that the proposed adversarial
filter attack can be used to compromise the reliability of a CM
subsystem. Here we show that the attack preserves speech fi-
delity so that it is also successful in compromising both CM and
ASV subsystems – the ASV subsystem by the spoofing attack,
and the CM subsystem by the Malafide filter attack.

Results presented in Table 2 show spoofing-aware speaker
verification (SASV) EERs [4] obtained using fused CM and
ASV scores computed from the same set of trials used for in-
dependent CM evaluation (Section 5). SASV-EERs are shown
without filtering (column 2) and with Malafide filters (columns
3-5) learned using one of the three CMs and tested under the
same mix of white-box and black-box settings as Table 1 (col-
umn 1). All Malafide filter results are for a 257-tap filter which
provokes the highest averaged SASV-EERs. Under all white-
box settings, the SASV-EER increases, to 11.2% for the AA-
SIST CM, 7.0% for the RawNet2 CM and to 1.6% for the SSL
CM. The trend for black-box settings is similar to that for in-
dependent CM results, with the system that uses the SSL CM
being wholly robust, but with the system that uses the RawNet2
CM being universally vulnerable.

Informal listening tests revealed that shorter-length filters
better preserve speech fidelity whereas longer-length filters re-
sult in detectable reverberation. Longer-length filters degrade
speech fidelity to the point that spoofing attacks are no longer
successful in compromising the ASV system.

We acknowledge that SASV-EERs are heavily dependent
on the proportion of negative class trials that are spoofed (as
opposed to non-target). In this respect, performance estimates
are not necessarily indicative of what might be expected in the
wild where, for instance, spoof attacks may be less prevalent.

7. Conclusions

The work reported in this paper shows that the reliability of
spoofing countermeasures (CMs) can be compromised using
adversarial, linear time-invariant filters and that these can also
be configured to compromise integrated CM and automatic
speaker verification (ASV) systems. Malafide attacks are a
threat in both white-box and black-box settings, and a RawNet2
CM is particularly vulnerable.

Results for integrated CM and ASV systems show that
Malafide attacks are successful in manipulating a spoofing CM
and, when used in conjunction with spoofing attacks and by in-
troducing only modest perturbations, ASV subsystems too. The
performance of the integrated system that uses a self-supervised
learning (SSL) CM is an exception; performance is reasonably
robust. This is likely caused by the introduction of greater dis-
tortion to the speech signal that is needed to compromise the rel-
atively more complex CM. The same distortion interferes with
the ability of the spoofing attack to compromise the ASV sys-
tem. Future work should study similar convolutional attacks
that are optimised to compromise both CM and ASV subsys-
tems. These attacks might expose vulnerabilities of even SSL-
based systems. Such work and is critical if we are to protect
confidence in the reliability of voice biometrics technology.
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