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Abstract 

Previous speech synthesis models from articulatory movements 

recorded using real-time MRI (rtMRI) only predicted vocal 

tract shape parameters and required additional pitch 

information to generate a speech waveform. This study 

proposes a two-stage deep learning model composed of CNN-

BiLSTM that predicts a mel-spectrogram from a rtMRI video 

and a HiFi-GAN vocoder that synthesizes a speech waveform. 

We evaluated our model on two databases: the ATR 503 

sentences rtMRI database and the USC-TIMIT database. The 

experimental results on the ATR 503 sentences rtMRI database 

show that the PESQ score and the RMSE of F0 are 1.64 and 

26.7 Hz. This demonstrates that all acoustic parameters, 

including fundamental frequency, can be estimated from the 

rtMRI videos. In the experiment on the USC-TIMIT database, 

we obtained a good PESQ score and RMSE for F0. However, 

the synthesized speech is unclear, indicating that the quality of 

the datasets affects the intelligibility of the synthesized speech. 

Index Terms: real-time MRI, articulatory movement, speech 

synthesis, speech waveform generation 

1. Introduction 

As neural networks are commonly used in text-to-speech (TTS), 

the quality of synthesized speech has become indistinguishable 

from human speech [1]. However, general TTS models capture 

the statistical relationship between text and speech and thus do 

not consider actual articulatory movements. This study 

proposes a speech synthesis model that uses articulatory 

movements as the inputs for generating speech. It would be a 

fundamental component of a text-to-MRI and MRI-to-speech 

pipeline, anticipated to be available in computer-assisted 

language learning (CALL) systems and offering substantial 

support for individuals with dysarthria. 

Several methods have been proposed to capture articulatory 

movements. These include electromagnetic articulography 

(EMA), which measures the movement of the coils attached to 

the articulators such as the lips and tongue [2, 3]; ultrasound 

tongue imaging (UTI), which captures the movement of the 

tongue using ultrasound [4, 5]; and real-time magnetic 

resonance imaging (rtMRI), which records the mid-sagittal 

plane of the upper airway using fast MRI [6, 7, 8, 9]. UTI can 

easily record a high-frame-rate video at approximately 100 fps. 

However, it can only record tongue movements. The EMA can 

be recorded at a high sampling rate of approximately 500 Hz. 

However, it can only provide position information regarding 

several points where the sensors are attached. By contrast, 

rtMRI can record all articulatory organs, including the soft 

palate and larynx, which are challenging to record using other 

methods. Although rtMRI videos have a relatively low frame 

rate of approximately 30 fps, they contain considerable helpful 

information for speech synthesis owing to their high spatial 

resolution. Therefore, we used rtMRI videos as the inputs for 

speech synthesis. 

Several models for synthesizing speech from rtMRI videos 

have been proposed, in which the MGC-LSP or mel-cepstrum 

are estimated from a series of MRI images. However, the 

estimated parameters only contain vocal tract shape 

information; hence, they require additional information about 

the fundamental frequency to synthesize a speech waveform. 

Although a model of speech synthesis from EMA has been 

proposed [10], few study have generated speech from rtMRI 

videos directly. This study proposes a two-stage model 

composed of CNN-BiLSTM that predicts a mel-spectrogram as 

an intermediate representation from a rtMRI video and a HiFi-

GAN vocoder that synthesizes a speech waveform. We evaluate 

our model on the ATR 503 Japanese sentences rtMRI and the 

USC-TIMIT MRI databases. We show that the two-stage model 

can generate reasonable speech sounds with the adequate 

fundamental frequency. 

2. Related work 

2.1. Estimation of MGC-LSP from rtMRI videos 

Csapó proposed three models: FC-DNN, CNN, and CNN-

LSTM, using rtMRI videos [11] to estimate MGC-LSP [12], an 

acoustic feature representing vocal tract shape. They showed 

that the CNN-LSTM model had the highest estimation accuracy. 

The model consisted of a CNN part with three convolutional 

and max pooling layers, an LSTM part with two LSTM layers, 

and two densely connected layers. This model is reasonable 

because the CNN part extracts the image features from each 

frame of the rtMRI video, and the LSTM part captures the time-

series features. Because the MGC-LSP estimated in this model 

is a vocal tract shape parameter, it is necessary to provide LP 

residual signals extracted from the original speech to synthesize 

a speech waveform. 

2.2. Estimation of mel-cepstrum from rtMRI videos using 

temporal super-resolution with transposed convolution 

Tanji et al. [13] proposed a model that applies a super-

resolution process along the temporal dimension using 

transposed convolution to estimate the mel-cepstrum from a 

rtMRI video. Although rtMRI has the advantage of recording 

entire articulatory organs with high spatial resolution, it has a 

disadvantage because the temporal resolution is comparatively 

lower than other methods for recording articulatory movements. 

They increased the temporal resolution by using transposed 

convolution to address this issue. Their proposed CNN-TC-

LSTM model, based on the CNN-LSTM model proposed by 

Csapó, inserts a transposed convolutional layer between the 

CNN and LSTM parts. A convolutional and a max pooling 

layers were added to the end of the CNN part, and the densely 

connected layers were eliminated from the CNN-LSTM model 

to optimize the model. The CNN-TC-LSTM model achieved a 
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better MCD [14] in the estimated mel-cepstrum and better 

perceptual evaluation of speech quality (PESQ) in the 

synthesized speeches than the CNN-LSTM model. However, 

the model also requires fundamental frequency information and 

an aperiodicity index of the original speech to synthesize a 

speech waveform. 

3. Proposed model 

We propose a model that estimates the mel-spectrogram as an 

intermediate representation and generates a speech waveform 

using a neural vocoder. Figure 1 illustrates the outline of the 

proposed model. The input rtMRI video is processed with a 

two-stage network. The first stage estimates the mel-

spectrogram from the rtMRI video, and the second stage 

synthesizes a speech waveform from the estimated mel-

spectrogram. 

We constructed a new model that modifies the CNN-LSTM 

model for mel-spectrogram estimation, showing high 

estimation accuracy in related studies. Table 1 lists the 

configuration details. The network estimated the corresponding 

spectrum from four consecutive frames of the rtMRI video. The 

CNN was implemented using EfficientNetV2 [15], which 

achieved high accuracy and superior efficiency in image 

classification tasks. EfficientNetV2 includes various models 

with different network depths, widths, and input image sizes. 

We employed the B2 model because the rtMRI image size was 

suitable for this model. We used up to the global average 

pooling layer of the B2 model and removed the densely 

connected layer that was appended for classification in the 

original B2 model. We enabled more complex image feature 

extraction in the CNN part by replacing the simple convolution 

and max pooling layers in the CNN-LSTM model with 

EfficientNetV2. We did not insert the transposed convolution 

layer in the CNN part because the up-sampling process was 

conducted in the HiFi-GAN vocoder. In the LSTM part, we 

used a single bidirectional LSTM (BiLSTM) layer to extract 

bidirectional time-series features. The number of hidden units 

 
1 https://rtmridb.ninjal.ac.jp/ 

was set to 640, and the bidirectional outputs were merged by 

adding them. After a dropout [16] rate of 0.5 was applied to the 

outputs of the BiLSTM layer to suppress overfitting, they were 

sent to a densely connected layer. This first stage has 19M 

parameters. 

We used HiFi-GAN [17], an efficient and high-fidelity 

neural vocoder for speech synthesis. HiFi-GAN is a GAN-

based non-autoregressive neural vocoder designed to efficiently 

capture periodic patterns in speech waveforms, thus enabling 

high-quality and fast speech synthesis. We used the HiFi-GAN 

V1 model, which has the largest model size and the highest 

quality of generated speech. The HiFi-GAN generator consists 

of combinations of convolutional and transposed convolutional 

layers. It generates speech waveforms by repeating up-

sampling along the time dimension with transposed convolution. 

In the proposed model, the mel-spectrum frame period 

corresponds to the frame interval of the rtMRI videos. 

Therefore, the detailed up-sampling factors in the HiFi-GAN 

generator vary according to the frame rates of the rtMRI videos 

and the generated waveforms in the datasets. 

4. Experimental setup 

4.1. Datasets 

4.1.1. ATR 503 sentences rtMRI database 

Currently under construction, the ATR 503 sentences rtMRI 

database1 [18] contains rtMRI videos of ATR 503 phoneme-

balanced sentences [19] read by a single male speaker. The 

database consists of 10 sets (A–J) of 50 phoneme-balanced 

spoken Japanese sentences (set J contains 53). Videos of the 

mid-sagittal plane of the head, including the entire vocal tract 

and audio of spoken sentences, were recorded using MRI 

equipment. The resolution of the video was 256 × 256 pixels, 

the frame rate was 27.17 fps, and the audio sampling rate was 

44,100 Hz. In the experiment, sets A to I were used as the 

training data and set J was randomly divided into the validation 

and test data. 

4.1.2. USC-TIMIT MRI database 

The USC-TIMIT MRI database [20] comprises rtMRI videos 

of same sentences as the MOCHA-TIMIT corpus [21] read by 

five male and female American English speakers. The 

resolution of the video was 68 × 68 pixels, the frame rate was 

 

Figure 1: Outline of proposed model 

Table 1: Configuration of the first stage network 

Operator Timesteps Size Layers 

(Input) 4 256, 256, 1 - 

ENv2 

-B2 

Conv3x3 4 128, 128, 32 1 

Fused- 

MBConv 
4 32, 32, 56 5 

MBConv 4 8, 8, 208 16 

Conv1x1 4 8, 8, 1408 1 

Pooling 4 1, 1, 1408 - 

BiLSTM 1 fwd/1 bwd 1, 1, 640 1 

Summation 1 1, 1, 640 - 

Dropout 1 1, 1, 640 - 

Dense 1 1, 1, 64 1 
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23.18 fps, and the audio sampling rate was 20,000 Hz. Because 

the audio contains loud noise generated during MRI recording, 

noise reduction was applied using a custom adaptive filter [22]. 

In the experiment, we used the data from a male speaker (M3) 

randomly split into 8:1:1 subsets: training, validation, and test. 

4.2. Preprocessing 

4.2.1. ATR 503 sentences rtMRI database 

For the rtMRI videos, luminance normalization was applied to 

smoothen the luminance changes between frames. For speech 

audio, noise reduction with spectral subtraction [23] removes 

loud noises generated by MRI equipment. The sampling rate of 

the audio is down-sampled to 11,413 Hz such that the frame 

rate of the rtMRI videos becomes approximately a factor of the 

audio sampling rate, which is convenient for introducing HiFi-

GAN in the original design. The number of dimensions of the 

mel-filter bank was set to 64. The resulting mel-power spectrum 

was compressed to a decibel scale and standardized. 

4.2.2. USC-TIMIT MRI database 

Because the size of the MRI videos in the USC-TIMIT MRI 

database is small (68 × 68 pixels), up-sampling by a factor of 

three is applied using a bilinear method to match the 

EfficientNetV2 input image size. Although the audio clips are 

denoised using an adaptive filter, they still contain MRI 

equipment noises that have not been entirely removed and 

reverberations that the adaptive filter may have caused. Because 

these noises and reverberations make model training 

challenging, we used the NVIDIA MAXINE Audio Effects 

SDK 1 , which provides deep-learning-based voice quality 

improvement tools to reduce them. For the same reason as in 

the ATR 503 sentences rtMRI database, the sampling rates of 

the audio clips were down-sampled to 11,866 Hz. 

4.3. Training setup of CNN-BiLSTM model 

The loss function employed for training the CNN-BiLSTM 

model is the mean squared error (MSE) between the log-mel-

spectrum of the original speech waveform and the estimated 

one. AdaBelief [24] was used as the optimization algorithm. 

The learning rate was set to 0.001 at the start of training and 

decayed by a factor of 10 for every four epochs of stagnation of 

loss improvement in the validation data. The training was 

terminated when the loss improvement stagnated for eight 

epochs, and the weight with the lowest loss in the validation 

data was adopted. The training was converged in 7.5 hours 

using an NVIDIA GeForce RTX 3090. The source code is 

available in our repository.2 

4.4. Training setup of HiFi-GAN 

In the original HiFi-GAN V1 model, the up-sampling factor, 

namely the stride of the four transposed convolutional layers of 

 
1 https://github.com/NVIDIA/MAXINE-AFX-SDK 
2 https://github.com/y-otn/mri-to-speech 

the generator, was (8, 8, 2, 2), and the kernel size was (16, 16, 

4, 4). As shown in Table 2, the up-sampling factor and kernel 

size are modified to (10, 7, 3, 2) and (20, 15, 7, 4) in the 

experiments on the ATR 503 sentences rtMRI database, 

respectively. In the experiments on the USC-TIMIT database, 

they were changed to (8, 8, 4, 2) and (16, 16, 8, 4). These factors 

were decided to match the frame rate of the rtMRI videos and 

the audios in each database. Our experiments reduced the 

number of dimensions of the mel-filter bank from 80 to 64. The 

other designs and training settings were the same as those of the 

official HiFi-GAN implementation3. 

The ATR 503 sentences rtMRI and the USC-TIMIT 

databases’ total speech length is approximately 50 min and 35 

min, respectively, insufficient to train HiFi-GAN from scratch. 

Therefore, we conducted pretraining using substantial speech 

corpora. In the ATR 503 sentences rtMRI database experiments, 

we used the Japanese versatile speech (JVS) corpus [25], which 

contains about 26 hours of reading by many speakers. In the 

USC-TIMIT experiment, we used the LJ Speech Dataset [26], 

an English speech corpus of approximately 24 hours readings. 

Fine-tuning was applied using training data from the rtMRI 

datasets. 

4.5. Evaluation metrics 

The PESQ narrowband [27] was employed to evaluate the 

synthesized speech’s quality objectively. PESQ ranges from -

0.5 to 4.5, with higher values corresponding to better speech 

quality. The F0 root mean squared error (RMSE) and 

voiced/unvoiced (V/UV) error were used to evaluate the 

accuracy of the estimated F0 objectively. The correct F0 is 

extracted using Harvest [28], the F0 extractor provided by the 

WORLD vocoder [29]. F0 RMSE is calculated only from the 

segments where both the original speech and the synthesized 

speech are determined to be voiced, and the V/UV error is 

calculated only from the speech segments. 

5. Results and discussion 

Table 3 shows the experimental results for the ATR 503 

sentences rtMRI database. The PESQ score of the speech 

synthesized using the estimated mel-spectrogram was 1.64. The 

F0 RMSE and V/UV errors were 26.7 Hz and 3.6%, respectively. 

These values for the copy synthesized speech obtained by 

inputting the ground truth mel-spectrogram into HiFi-GAN are 

21.3 Hz and 3.5%, respectively. The results indicate that the 

generated speeches have almost the same quality in 

fundamental frequency and voiced/unvoiced judgment as the 

original speeches. Figure 2 shows the mel-spectrograms of the 

original speech and the speech synthesized from a rtMRI video. 

Although there were minor differences in detail, the overall 

spectral structure was well reconstructed. Therefore, the 

proposed model achieved the goal of this study. 

Figure 3 shows an example of an F0 trajectory of original 

speech and speech synthesized from a rtMRI video. The outline 

3 https://github.com/jik876/hifi-gan 

Table 3: PESQ, F0 RMSE (Hz), and V/UV error (%) 

on the ATR 503 sentences rtMRI database 

Evaluated speech PESQ F0 RMSE V/UV 

Predicted 1.64 26.7 3.6 

Copy synthesized 2.97 21.3 3.5 

 

Table 2: Hyperparameters of HiFi-GAN generators 

Model Stride Kernel size 

Original HiFi-GAN V1 (8, 8, 2, 2) (16, 16, 4, 4) 

ATR503 database (10, 7, 3, 2) (20, 15, 7, 4) 

USC-TIMIT database (8, 8, 4, 2) (16, 16, 8, 4) 
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of F0 of the predicted speech almost traces the original speech. 

However, we found a minor difference between them at 

approximately 5 seconds. This type of difference, thought to be 

caused by the strength of expiratory pressure that cannot be 

captured with rtMRI equipment, is sometimes found in the 

results. This difference slightly impacts the quality of the 

generated sound, such as pitch intonation. Some sample audio 

clips are available on our website1. 

Table 4 shows PESQ, F0 RMSE, and the V/UV errors on 

the USC-TIMIT database. PESQ and F0 RMSE of the speech 

synthesized from the estimated mel-spectrogram were 2.07 and 

27.6 Hz, respectively. In contrast, the V/UV error was 17.2%, 

worse than the ATR 503 sentences rtMRI database experiment. 

Although the PESQ score is better than that on the ATR 503 

sentences rtMRI database, the generated speeches have poorer 

speech quality. This is also observed when the generated 

speeches are evaluated using an ASR system. We calculated the 

generated speeches' word error rate (WER) using Microsoft 

Azure Speech to Text. The WER of the speech generated from 

the rtMRI videos on the USC-TIMIT database was 102.6%, 

showing that the speech quality was terrible, whereas that of the 

ATR 503 sentences was 0.7%, making it evident that the speech 

quality is excellent. 

The quality of the recorded speeches and rtMRI videos 

seems to cause this significant difference between the generated 

speeches. The V/UV error of the reconstructed speech obtained 

by inputting the ground truth mel-spectrogram into HiFi-GAN 

is 12.0% in the USC-TIMIT database, while that on the ATR 

503 sentences rtMRI database is 3.5%. This shows that the 

quality of speech in the USC-TIMIT database is worse than that 

in the ATR 503 sentences rtMRI database. Additionally, in 

silent speech recognition, the inputs for the recognizer are USC-

TIMIT rtMRI videos, and the outputs are texts; the WER is 

reported to be 42.1% [30]. This result suggests that capturing 

speech features from the USC-TIMIT rtMRI videos is 

challenging. As shown in Figure 4, the resolution of USC-

TIMIT MRI images is low. The quality is always unstable 

 
1 https://y-otn.github.io/mri-to-speech-demo/ 

owing to intense noise, artifacts, and uneven luminance in some 

areas of the image [31]. In addition, there were several parts 

where the speech synthesized from the rtMRI video was not in 

sync with the video at 0.5 seconds, caused by some 

misalignments in the database. In contrast, the ATR 503 

sentences rtMRI database has excellent image quality and does 

not have such problems, which yields accurate results in 

generating high-quality speech. 

6. Conclusions 

This study proposes a two-stage model for estimating the mel-

spectrogram from rtMRI videos, enabling speech waveform 

synthesis from rtMRI videos. The ATR 503 sentences rtMRI 

database experiment confirmed that the synthesized speech’s F0 

RMSE and V/UV errors were low, and the speech content was 

accurately reproduced. These results show that all acoustic 

parameters, including fundamental frequency, can be estimated 

from only four frame consecutive rtMRI images, while a 

previous study demonstrated it was possible from 13 frames 

[32]. However, in the experiment on the USC-TIMIT database, 

the generated speech lacked intelligibility. Although an 

apparent reason has not been identified, the quality of the USC-

TIMIT MRI database is expected to have several problems. We 

would like to evaluate our approach with other high-quality 

rtMRI datasets [33]. 

In the future, we plan to investigate why F0 and 

voiced/unvoiced were well estimated from rtMRI videos in 

which vocal fold vibration was not recorded. 
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Figure 2: Mel-spectrograms of the original speech (top) 

and the speech synthesized from rtMRI video (bottom) 

Table 4: PESQ, F0 RMSE (Hz), and V/UV error (%) 

on the USC-TIMIT database 

Evaluated speech PESQ F0 RMSE V/UV 

Predicted 2.07 27.6 17.2 

Copy synthesized 3.15 24.5 12.0 

 

 

Figure 3: F0 trajectories of the original speech 

and the speech synthesized from rtMRI video 

 

Figure 4: MRI images of the USC-TIMIT 
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