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Abstract
Whisper is a recent Automatic Speech Recognition (ASR)
model displaying impressive robustness to both out-of-
distribution inputs and random noise. In this work, we show
that this robustness does not carry over to adversarial noise.
We show that we can degrade Whisper performance dramati-
cally, or even transcribe a target sentence of our choice, by gen-
erating very small input perturbations with Signal Noise Ratio
of 35-45dB. We also show that by fooling the Whisper language
detector we can very easily degrade the performance of multi-
lingual models. These vulnerabilities of a widely popular open-
source model have practical security implications and empha-
size the need for adversarially robust ASR.
Index Terms: Speech Recognition, Adversarial robustness

1. Introduction
The improvements of Automatic Speech Recognition (ASR)
models on academic benchmarks do not systematically lead
to better performance in practical settings. That requires an-
other quality, commonly called robustness. But different types
of shifts between benchmarks and practical settings lead to as
many definitions of robustness. There is robustness to out-
of-distribution data, i.e. the ability to generalize to different
datasets than the ones used in training. There is robustness to
random noise and in particular ambient noise. Finally, there is
adversarial robustness, i.e. to perturbations generated by a third
party with the specific intent to fool the model.

Recently the Whisper ASR model [1], a transformer
sequence-to-sequence model trained on very large amounts of
supervised data, was released in English-only and multilingual
versions. Its authors do not use data augmentation, relying
solely on their large dataset to encourage robustness. Indeed,
they achieve very impressive robustness against noise and out-
of-distribution data. Whisper’s remarkable performance has
soon led to several applications like automatic captioning of on-
line videos or speech-to-image generation models.

Its robustness to adversarial perturbations, however, has not
yet been evaluated. It has been shown in past work that success-
ful adversarial attacks on ASR models could lead to troubling
security threats in multiple settings, in particular when the at-
tacker has white-box access to the model [2]. Whisper is open-
source: if it is vulnerable to adversarial attacks, then its de-
ployment in real-world applications could turn these potential
dangers into real liabilities.

In this paper, we show that Whisper is indeed vulnerable to
white-box adversarial attacks. We use both targeted and untar-
geted attack algorithms, which we describe in section 3. We use
them to modify inputs sampled from the LibriSpeech dataset
[3] with near-imperceptible perturbations, achieving 35 to 40dB

Signal-Noise Ratio (SNR) in most cases (section 4). We show
that these adversarial examples can fool Whisper models of all
sizes for a large majority of inputs, either with untargeted at-
tacks to mistranscribe predictions or with targeted ones to tran-
scribe a specific target sentence of the attacker’s choice (section
5). Against untargeted attacks, Whisper is not any more ro-
bust than previously evaluated models. Against targeted attacks,
multilingual models resist a little better, but can still be fooled
by most inputs (5.1). In addition, multilingual Whisper mod-
els can easily be fooled to detect the wrong language: this very
simple attack is sufficient to entirely mistranscribe sentences in
low-resource languages (5.2). We propose a universal version
of this attack, with a single perturbation that can fool multiple
speech utterances. In section 6 we finally discuss the practical
implications and limitations of these results. We also combine
Whisper with a state-of-the-art ASR defense and recover some
robustness at the cost of an important performance tradeoff (9%
WER on LibriSpeech test-clean).

To summarize, by studying Whisper this work makes two
novel contributions: (1) we show that using massive amounts of
diverse data does not robustness in the adversarial regime, con-
trary to the random noise regime; and (2) We propose a novel
attack setting to specifically fool multilingual models on low-
resource settings. We release our code and all our adversarial
examples alongside this paper1. We invite the speech modeling
community to remain cautious when applying ASR models to
security-critical settings and to combine them with adversarial
defenses when doing so.

2. Related work
Adversarial attacks were first proposed on image classification
[4, 5], and were later extended to ASR models [6, 7, 8]. Most
works have focused on HMM or RNN-based models, but a
few recent papers have compared the vulnerabilities of differ-
ent neural architectures [9, 10, 11], though none on Whisper.

The interactions between robustness to adversarial pertur-
bations and to other types of noise have not been explored for
ASR so far. They however have been studied for image classifi-
cation. Some works have unified adversarial and random noise
under a semi-random regime and derived theoretical robustness
bounds [12, 13]. Moreover, a model robust to white noise can
be indirectly useful in adversarially robust pipelines [14, 15].

We also study specific attacks on multilingual ASR models.
Other works have shown the fragility of multilingual language
models under perturbations of text inputs [16]. For ASR, some
past work has compared the robustness of monolingual models
trained in different languages [17].

1https://github.com/RaphaelOlivier/whisper_
attack
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3. Adversarial attacks
Adversarial attacks consist of generating input perturbations de-
signed to manipulate model outputs while evading human de-
tection. We focus on norm-based white-box attacks: using
model gradients for optimization, we generate an additive per-
turbation δ to the input x such that ∥δ∥p is small. We control
the perturbation size with the Signal-Noise Ratio SNR(δ, x) =
20(log ∥x∥2 − log ∥δ∥2), expressed in decibels (dB).

Adversarial attacks differ in their objectives. We distin-
guish untargeted attacks which prevent models from predict-
ing the correct output; and targeted attacks which fool models
into predicting a specific target chosen by the attacker. On ASR
models, this means transcribing a specific sentence. Untargeted
attacks, which are satisfied by predicting random sentences or
gibberish, are much easier. We apply both types of attacks, us-
ing different algorithms due to the difference in attack difficulty.

3.1. PGD attack

We use the Projected Gradient Descent (PGD) attack [18] in
Lp loss, with p = 2 and p = ∞. We optimize δ under the
following constrained objective:

max
∥δ∥p<ϵ

L(f(x+ δ), y)

where f is the model (Whisper), x the input, y its correct tran-
scription and L the loss function (cross-entropy). To keep δ in
the Lp-ball of radius ϵ, the optimization algorithm is projected
gradient descent for n steps: at each step, we run one gradient
update, then if δ is too large we project it back onto the ball.
PGD can run targeted attacks, by minimizing the loss with the
target yt instead. However, targeted ASR attacks require addi-
tional optimization tricks.

3.2. Modified CW attack

We use a version of the targeted Carlini&Wagner (CW) attack
[19, 7]: with target sentence yt the optimization objective is

min
∥δ∥∞<ϵ

L(f(x+ δ), yt) + c ∥δ∥22

i.e. we use both a L∞ bound (by clamping δ after optimization
steps) and a L2 regularization term with coefficient c. We set a
fairly large initial ϵ, then gradually decrease it with the follow-
ing schedule. At every optimization step, we check whether the
model transcribes the target yt. If it does, we multiply ϵ by a
factor α < 1 and keep optimizing. We run this algorithm for at
most n optimization steps while decreasing ϵ at most k times.

We found that the vanilla CW attack has trouble fooling
Whisper. While investigating why that is the case, we observed
that the first predicted token is particularly hard to push toward
the target. Therefore, we strengthen its coefficient in the aggre-
gated loss over a sequence of length L, by setting:

L(f(x), yt) = 1

L+ λ
[(1+λ)L(f(x)1, yti)+

L∑

i=2

L(f(x)i, yti)]

We find λ = 1 to work well in practice. All CW results that we
report thereafter use this modified attack.

3.3. Language confusion attack

Multilingual Whisper models run a language detection module
before transcribing sentences (see Section 4.1). Alongside at-
tacking the decoder directly, we investigate the consequences of

attacking that language detector, which is essentially a classifier
trained with cross-entropy loss. We use the PGD targeted attack
to push the prediction from the original language to another tar-
get language. We evaluate how this affects ASR performance.

Given that this is a simple attack objective, we also try ap-
plying a more restrictive threat model and run a universal at-
tack. We optimize a single δ to fool not just one but all inputs
x. Specifically, we train a 30-second long parameter δ to fool
the following objective:

max
∥δ∥p<ϵ

Ex∈DL(f(x+ δ), y)

To optimize it we combine utterances into a small ”training set”
D, and train with PGD for several epochs. We then evaluate
how that perturbation affects ASR performance on a test set dis-
joint from this training set.

4. Experimental setting
We run all our experiments using only one Tesla A100 GPU.
We run attacks using SpeechBrain [20] and robust speech [10],
within which we integrate the Whisper inference package pro-
vided by OpenAI, adding loss computation functions to it.

4.1. Whisper models

Whisper exists in 5 model sizes. We run our attacks on all
models from tiny (39M parameters) to large (1550M). All mod-
els are Transformer sequence-to-sequence models, with an en-
coder turning speech inputs into contextual representations, and
a decoder mapping them to language tokens. There are four
English-only models trained on 438kh of supervised English
training data, and five multilingual models trained with an ad-
ditional 243kh of multilingual data.Initial tokens in the decoder
can specify the task and the language. A language detection
module generates the latter if it is not specified and if the model
is multilingual. We do not change any of the default inference
hyperparameters: for example, the beam size is 5 for all models.

4.2. Datasets

To attack the ASR decoder we perturb inputs sampled from the
LibriSpeech test-clean dataset: 75 for the untargeted attack and
17 for the (much longer) targeted attack. As target transcription
for the CW attack, we follow the example of [7] and use the
fixed sentence ”OK Google, browse to evil.com”. This sentence
is arbitrary and could be replaced with any other.

To attack language detection, we use the multilingual Com-
monVoice dataset [21]. We sample 100 sentences from the test
set of each of the following seven languages: Armenian, Lithua-
nian, Czech, Danish, Indonesian, Italian, and English. Whis-
per was trained on varying amounts of these languages, making
them representative of the distribution of its training data. We
use three target languages: English, Tagalog, and Serbian, also
present in very different amounts in the Whisper training set.
For the universal language confusion attack, the attack training
set consists of 70 sentences (10 per source language), disjoint
from the seven test sets, and the target language is Serbian.

4.3. Attack hyperparameters

For the PGD attack in L2 norm, we set SNR objectives of 30 and
40dB, which correspond to very small noise. We then compute
for each utterance the corresponding ϵ bound. We use an attack
learning rate of 0.1 ∗ ϵ, and n = 200 attack iteration steps. This
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Model Params. Clean WN 0dB L2 PGD WER L∞ PGD WER Carlini&Wagner
WER WER SNR = 35dB SNR=40dB ϵ = 5e−3 ϵ = 1.5e−3 Acc. SNR

SpeechBrain 165M 2.4% 89.1% 75.9% 63.2% 93.0% 81.6% 100% 37dB
tiny.en 39M 3.4% 89.6% 99.0% 87.8& 115% 100% 94.1% 41.3dB
base.en 74M 3.0% 64.7% 92.8% 81.7% 104% 98.3% 100% 38.7dB
small.en 244M 1.9% 46.1% 67.2% 53.9% 78.7% 66.0% 82.4% 40.0dB
medium.en 769M 1.7% 40.3% 52.9% 39.3% 65.2% 51.4% 76.5% 40.5dB
tiny 39M 5.8% 93.2% 103% 96.1% 107% 104% 82.3% 36.6dB
base 74M 3.4% 77.9% 90.3% 80.4% 102% 96.7% 76.5% 35.1dB
small 244M 2.0% 52.0% 75.4% 61.5% 89.8% 77.4% 52.9% 32.0dB
medium 769M 1.5% 36.5% 49.5% 38.9% 63.3% 49.3% 64.7% 29.5dB
large 1550M 1.6% 32.6% 45.3% 34.1% 49.2% 38.8% 82.4% 26.6dB

Table 1: Results on LibriSpeech test-clean of the white-box attacks. For untargeted PGD attacks, we report the achieved WER with a
35dB and 40dB respective SNR for L2 attacks, and with ϵ = 0.005 and ϵ = 0.0015 for L∞ attacks. We also report the Word-Error
Rate on the same data under random white noise (WN). For the targeted CW attack, we report the proportion of successful adversarial
examples (those that Whisper transcribes as the target) and their average SNR. We evaluate the Speechbrain transformer model (first
line) and all Whisper models.

attack on Whisper medium runs in 2 minutes on one A100 for
a typical utterance. For the L∞ attack we fix ϵ = 0.005 or
ϵ = 0.0015 (on average SNRs of 38dB and 49dB respectively).
For the CW attack, we use n = 2000 iteration steps (∼25min
for Whisper medium), the Adam optimizer with learning rate
0.01, and regularization term c = 0.25 for the tiny and base
models, c = 1 for larger models. Our initial radius is ϵ = 0.1:
this corresponds on average to a 15dB SNR. We decrease ϵ up
to k = 8 times by a factor α = 0.7 when the model predicts the
target, for a final SNR of up to 45dB.

For the white-box language confusion attack, we set an
SNR of 45dB and n = 30 iteration steps. The universal at-
tack uses a SNR of 40dB, and fits δ for 2000 epochs over the
70 training sentences using one iteration step per input and a
learning rate of 0.001 ∗ ϵ

4.4. Metrics

Untargeted and language attacks aim at degrading ASR perfor-
mance. We evaluate them with the Word-Error Rate (WER) on
correct transcriptions. For targeted attacks, the goal is to predict
perfectly the attack target with little noise. Therefore, we eval-
uate them with sentence-level accuracy, i.e. we only consider
an attack successful if Whisper transcribes the target exactly.
Moreover, we only consider attacks successful if the achieved
SNR is higher than 30dB.

5. Results
5.1. Attack on ASR decoding

In Table 1 we report the results of the untargeted PGD and
targeted CW attack. We observe that even with small pertur-
bations, the PGD attack is largely successful in degrading the
performance of all Whisper models, by 35 to 89% in absolute
WER for 40dB SNR and 48 to 99% for 35dB SNR. Such degra-
dation can prevent Whisper from being useful in most practical
applications (e.g. video captioning with a 45% WER is unsat-
isfying). L∞ PGD attacks are equally or more successful, with
very small radii (in practice similar to SNRs of 38-49dB).

For comparison, we run the same attacks on the Speech-
Brain Transformer model [20] trained on LibriSpeech, using the
same beam size of 5 during inference. We observe that attack
results are very close to those of the Whisper small model, of
similar size and clean performance. We can conclude from this

that the Whisper training method does not lead to any improve-
ment in adversarial robustness on untargeted attacks, compared
to models of similar architecture trained in-distribution on fewer
data. In contrast, Whisper models perform considerably better
than this baseline under white noise, which we report in the
same Table. This illustrates the difference between robustness
to average (random) and worst-case (adversarial) perturbations.

As for targeted attacks, in 50% to 90% of all sentences the
CW attack succeeds in making the model predict the target with
very little noise. This does show an increase in robustness com-
pared to the baseline, but Whisper remains largely vulnerable
to targeted attacks. Models of all sizes can be fooled, but mul-
tilingual models are harder to attack. Most models are fooled
with an SNR above 35dB; for the bigger multilingual models
the SNR drops but remains above 25dB. This could indicate
that multilingual training helps make models robust to targeted
attacks, though not robust enough to evade most attacks.

5.2. Language confusion attack on multilingual models

In Figure 1 we plot the WER of the Whisper medium model un-
der the language confusion attack, as a function of the amount
of Whisper training data in the true language. We report our re-
sults for three possible attack targets: English, Tagalog, and Ser-
bian. We observe that in a large majority of cases, this very sim-
ple attack is sufficient to degrade significantly the WER of the
ASR model. When the true language is poorly represented in
the Whisper training data, as for Armenian and Lithuanian, the
WER jumps over 100%. For higher-resource languages (Czech,
Danish, Indonesian) the attack can degrade the WER to 75% or
higher. For the best-represented languages, like English or Ital-
ian, the attack is a bit less effective but still degraded the perfor-
mance by 16% to 60% absolute WER points. Intuitively, when
the source and target languages are identical the attack has no
effect, as observed with English.

We achieve this performance degradation with very low
noise (45dB SNR) and an extremely simple attack with 30 it-
erations of PGD. This shows how brittle a multilingual model
with language detection can be, especially over low-resource
languages. While looking at the actual outputs on these low-
resource languages under attack, we observed that the predic-
tion is a mostly nonsensical mix of the true and target language.

Even the universal attack is largely successful in confusing
Whisper, despite using a single perturbation for all inputs and all

4396



Figure 1: WER of the multilingual Whisper medium on subsets of the CommonVoice dataset in 7 languages. We fool the model with
white-box attacks into wrongfully detecting either English, Tagalog, or Serbian. We also fool it with a universal attack to predict
Serbian. The x axis corresponds to the amount of training data Whisper was trained on for the true language of the inputs.

source languages. It achieves a Word-Error Rate degradation of
20 to 40% for all languages. This perturbation can be used off-
the-shelf on any input, without additional computation. With its
SNR of almost 40dB it remains almost imperceptible.

The influence of the choice of target language on attack suc-
cess is hard to derive from our results. The Serbian attack target
has a stronger effect on most source languages, but Danish and
Indonesian are exceptions. Studying whether linguistic proxim-
ity between source and target languages would be an interesting
follow-up to this work.

6. Implications and Mitigation
6.1. Security threats on ASR and limitations

The threat models we evaluate in this work cannot be ap-
plied to 100% of ASR applications. Apart from the universal
language confusion attack, whose WER degradation does not
match white-box attacks, our adversarial algorithms need time
to generate noise tailored for each input. Moreover, they modify
inputs in the digital space, not under real-world acoustic condi-
tions. As a result, applying these attacks over-the-air as people
speak rather than in the digital waveform space is not doable at
this time. However, other works have extended adversarial at-
tacks to be generated over the air [8, 22] and in real-time [9, 23].
Applications of those works to Whisper may be possible and
would extend our results to many more threat models.

In addition, our simple threat models are sufficient to fool
Whisper in several practical situations. For instance, if ASR
is used to filter speech inputs, e.g. to remove hateful content
from an online platform, new uploads can evade said detection
with an untargeted attack. Other possible applications include
censorship triggering (using targeted attacks to fool Whisper
into perceiving hateful content where there is not) or even data
poisoning if Whisper is used to generate new text corpus from
audio. With the recent improvements in ASR, such use cases are
plausible enough to require caution from the speech community.

6.2. Defending Whisper with randomized smoothing

Fortunately, defenses against adversarial attacks exist. For ex-
ample, randomized smoothing [15] is a simple defense that adds
Gaussian noise over inputs before passing them to the model. It
has been extended to ASR in the past [24, 25].

Model no attack PGD 35dB PGD 40dB
undefended 3.4% 90.3% 80.4%
σ = 0.02 9.6% 35.6% 21.4%
σ = 0.03 18.9% 37.6% 27.8%

Table 2: WER of the defended Whisper base model under PGD
attack. We use randomized smoothing with deviations 0.02 and
0.03. We compare results to the undefended model.

As the vanilla Whisper is fairly robust to Gaussian noise, it
would likely be a good fit for this defense. We briefly verify it
by using smoothing on the base model with Gaussian noise, us-
ing several standard deviations σ, and attacking it with PGD at
SNR 35dB. The results, reported in Table 2, show that smooth-
ing mitigates the untargeted attack threat partially and recovers
most of the degraded performance under attack. However, the
performance tradeoff of this attack on unmodified inputs is sig-
nificant, with a WER increase of 6 to 15 absolute points.

Using the larger models and further enhancements of the
defense may improve those results. Still, randomized smooth-
ing is not a silver bullet. Its robustness guarantees apply to
norm-bound and specifically L2-bound perturbations. This cov-
ers the L2 PGD attack but not all adversarial attacks in the lit-
erature. Further research is required to achieve robust ASR.

7. Conclusion
Despite its robustness to natural or random perturbations and
distributional shifts, Whisper is highly vulnerable to adversarial
examples. In particular, ASR performance in ”low-resource”
languages (relative to English) is very simple to degrade. Both
targeted and untargeted white-box ASR attacks are effective as
well. These vulnerabilities are the source of practical, concern-
ing liabilities and emphasize the need for adversarially robust
ASR models.

They also suggest interesting directions of progress for
speech modeling. Whisper’s out-of-distribution generalization,
emerging from large amounts of training data, may not bring ad-
versarial robustness; but inversely, adversarially robust models
do often generalize better to new domains than non-robust ones.
Therefore extending adversarial training to ASR may yield a
path toward even greater or less data-consuming generalization.

4397



8. References
[1] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Chris-

tine McLeavey, and Ilya Sutskever, “Robust speech recognition
via large-scale weak supervision.,” 2022.

[2] Hadi Abdullah, Kevin Warren, Vincent Bindschaedler, Nicolas
Papernot, and Patrick Traynor, “SoK: The Faults in our ASRs:
An Overview of Attacks against Automatic Speech Recognition
and Speaker Identification Systems,” in IEEE Symposium on Se-
curity and Privacy (IEEE S&P), 2021.

[3] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: An asr corpus based on public domain audio books,”
in 2015 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2015, pp. 5206–5210.

[4] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus, “In-
triguing properties of neural networks,” in ICLR, 2014.

[5] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy, “Ex-
plaining and harnessing adversarial examples,” 2014.

[6] Moustapha M Cisse, Yossi Adi, Natalia Neverova, and Joseph
Keshet, “Houdini: Fooling deep structured visual and speech
recognition models with adversarial examples,” in Advances in
Neural Information Processing Systems, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, Eds. 2017, vol. 30, Curran Associates, Inc.

[7] Nicholas Carlini and David A. Wagner, “Audio adversarial exam-
ples: Targeted attacks on speech-to-text,” CoRR, 2018.

[8] Yao Qin, Nicholas Carlini, Garrison Cottrell, Ian Goodfellow, and
Colin Raffel, “Imperceptible, robust, and targeted adversarial
examples for automatic speech recognition,” in Proceedings of
the 36th International Conference on Machine Learning, Kama-
lika Chaudhuri and Ruslan Salakhutdinov, Eds. 09–15 Jun 2019,
vol. 97 of Proceedings of Machine Learning Research, pp. 5231–
5240, PMLR.

[9] Zhiyun Lu, Wei Han, Yu Zhang, and Liangliang Cao, “Exploring
Targeted Universal Adversarial Perturbations to End-to-End ASR
Models,” in Proc. Interspeech 2021, 2021, pp. 3460–3464.

[10] Raphael Olivier and Bhiksha Raj, “Recent improvements of asr
models in the face of adversarial attacks,” Interspeech, 2022.

[11] Haibin Wu, Bo Zheng, Xu Li, Xixin Wu, Hung-Yi Lee, and He-
len Meng, “Characterizing the adversarial vulnerability of speech
self-supervised learning,” in IEEE International Conference on
Acoustics, Speech and Signal Processing, ICASSP 2022, Virtual
and Singapore, 23-27 May 2022. 2022, pp. 3164–3168, IEEE.

[12] Alhussein Fawzi, Seyed-Mohsen Moosavi-Dezfooli, and Pascal
Frossard, “Robustness of classifiers: From adversarial to random
noise,” in Proceedings of the 30th International Conference on
Neural Information Processing Systems, Red Hook, NY, USA,
2016, NIPS’16, p. 1632–1640, Curran Associates Inc.

[13] Leslie Rice, Anna Bair, Huan Zhang, and J. Zico Kolter, “Ro-
bustness between the worst and average case,” in Advances in
Neural Information Processing Systems, M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, Eds. 2021,
vol. 34, pp. 27840–27851, Curran Associates, Inc.

[14] Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel
Hsu, and Suman Jana, “Certified robustness to adversarial ex-
amples with differential privacy,” in 2019 IEEE Symposium on
Security and Privacy (SP), 2019, pp. 656–672.

[15] Jeremy M. Cohen, Elan Rosenfeld, and J. Zico Kolter, “Certified
adversarial robustness via randomized smoothing,” CoRR, 2019.

[16] Sara Rosenthal, Mihaela A. Bornea, and Avirup Sil, “Are mul-
tilingual bert models robust? a case study on adversarial attacks
for multilingual question answering,” ArXiv, vol. abs/2104.07646,
2021.

[17] Karla Markert, Donika Mirdita, and Konstantin Böttinger, “Lan-
guage dependencies in adversarial attacks on speech recognition
systems,” in 2021 ISCA Symposium on Security and Privacy in
Speech Communication. nov 2021, ISCA.

[18] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dim-
itris Tsipras, and Adrian Vladu, “Towards deep learning models
resistant to adversarial attacks,” in ICLR 2018, Conference Track
Proceedings, 2018.

[19] Nicholas Carlini and David A. Wagner, “Towards evaluating the
robustness of neural networks,” CoRR, 2016.

[20] Mirco Ravanelli, Titouan Parcollet, Peter Plantinga, Aku Rouhe,
Samuele Cornell, Loren Lugosch, Cem Subakan, Nauman
Dawalatabad, Abdelwahab Heba, Jianyuan Zhong, Ju-Chieh
Chou, Sung-Lin Yeh, Szu-Wei Fu, Chien-Feng Liao, Elena Ras-
torgueva, François Grondin, William Aris, Hwidong Na, Yan Gao,
Renato De Mori, and Yoshua Bengio, “SpeechBrain: A general-
purpose speech toolkit,” 2021, arXiv:2106.04624.

[21] Rosana Ardila, Megan Branson, Kelly Davis, Michael Henretty,
Michael Kohler, Josh Meyer, Reuben Morais, Lindsay Saun-
ders, Francis M. Tyers, and Gregor Weber, “Common voice: A
massively-multilingual speech corpus,” in LREC, 2020.

[22] Lea Schönherr, Thorsten Eisenhofer, Steffen Zeiler, Thorsten
Holz, and Dorothea Kolossa, “Imperio: Robust over-the-air ad-
versarial examples for automatic speech recognition systems,” in
Annual Computer Security Applications Conference, New York,
NY, USA, 2020, ACSAC ’20, p. 843–855, Association for Com-
puting Machinery.

[23] Yi Xie, Zhuohang Li, Cong Shi, Jian Liu, Yingying Chen, and
Bo Yuan, “Enabling fast and universal audio adversarial attack
using generative model,” in AAAI, 2021.
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