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Abstract
Recent text-to-speech models have reached the level of gener-
ating natural speech similar to what humans say. But there still
have limitations in terms of expressiveness. The existing emo-
tional speech synthesis models have shown controllability using
interpolated features with scaling parameters in emotional latent
space. However, the emotional latent space generated from the
existing models is difficult to control the continuous emotional
intensity because of the entanglement of features like emotions,
speakers, etc. In this paper, we propose a novel method to con-
trol the continuous intensity of emotions using semi-supervised
learning. The model learns emotions of intermediate intensity
using pseudo-labels generated from phoneme-level sequences
of speech information. An embedding space built from the pro-
posed model satisfies the uniform grid geometry with an emo-
tional basis. The experimental results showed that the proposed
method was superior in controllability and naturalness.
Index Terms: emotional speech synthesis, text-to-speech
(TTS), semi-supervised learning, emotional intensity control

1. Introduction
Synthesized speech from deep learning-based text-to-speech
(TTS) models [1, 2, 3] have already shown excellent perfor-
mance about naturalness. It is suitable and sufficient for general
information delivery purposes to apply a speech synthesis sys-
tem to real-world applications. However, it is difficult to syn-
thesize expressive speech including paralinguistic characteris-
tics such as pitch, stress, tone, and rhythm.

Expressive speech models are increasingly necessary, so
emotional TTS research is being aggressively pursued. There
are several works [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] re-
lated to emotional speech synthesis model. First, some stud-
ies [4, 5, 6] proposed methods to extract emotional information
from reference speech. Global style token (GST) [4] demon-
strated a style encoder trained by unsupervised learning to ex-
tract style embedding vector from reference speech and then
exploited it to synthesize emotional speech. Other studies [5, 6]
used a speech emotion recognition (SER) model to learn a
speech emotion embedding space. Authors [7, 8] proposed a
method to utilize categorical emotion labels. Specifically, Lee
et al [7] applied the emotion labels to the attention RNN to
enable emotional speech synthesis. Tits et al [8] fine-tuned
a pretrained speech synthesis model with a small set of emo-
tional dataset. Unfortunately, speech synthesized by the pre-
vious methods [4, 5, 6, 7] provided only a coarse-grained ex-
pression because the entire sentence has been adjusted with one
global information. Therefore, it is difficult to reflect the user’s
requirements for fine-grained control in the emotional TTS

Figure 1: The grid geometry with an emotional basis in the em-
bedding space. Embedding space of (a) conventional models
and (b) the proposed method. Two red points denote neutral
and certain emotion. The yellow and white points are the ac-
tual intermediate emotion and the linear interpolated emotion
from the two red points, respectively.

model. To improve fine-grained expression, there are attempts
to control an emotion intensity [9, 10, 11, 12, 13, 14, 15, 16, 17],
not the categorical emotion of speech. [9, 10] introduced mod-
els to reflect detailed emotional expression by adjusting emotion
strength with controllable parameter. [11] proposed a method
to control the intensity of emotions using non-linear interpo-
lation from categorical emotion embedding space. [12] con-
trolled fine-grained emotion intensity by conducting distance-
based intensity quantization. [13, 14, 15] suggested studies of
emotion intensity control with ranking functions and the pro-
posed method is only applicable for a single speaker dataset.
[16] introduced a self-supervised learning for prosody repre-
sentations. And [17] proposed a method for generating speech
with a mixture of emotions.

Even though previous works have proposed controllable
emotional intensity models, there are two limitations. First, it is
difficult to synthesize speech by controlling the emotion space
as desired. Conventional emotional TTS models find the emo-
tion embedding vector for discretized intervals and utilize the
vector to synthesize emotion speech. As shown in Fig. 1(a), an
embedding space is entangled not only with various emotions
but also with other features, like speaker identity, pitch or lin-
guistic information. Accordingly, the grid geometry from the
perspective of the emotional basis may form a valley-shaped
grid as shown in Fig. 1(a). Due to the valley-shaped gird in the
embedding space, linearity for emotions cannot be guaranteed,
and it is hard to control emotions as desired. For example, sup-
pose you want to find an intermediate emotion (see the yellow
point in Fig. 1) from two certain emotions (see red points in
Fig. 1). If the embedding space consists of the non-uniform
grid as shown in Fig. 1(a), an emotion predicted by interpo-
lation models is far from the actual intermediate emotion (see
the white point in Fig. 1). Accordingly, the interpolated emo-
tional speech may be synthesized differently than desired. On
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Figure 2: Overall Architecture of proposed model. Hpho is a hidden phoneme embedding and λ is an interpolation weight. (a)
emotional speech synthesis framework based on Fastspeech2 [3] (b) variance adaptor (c) speech mixer M which is generating mixed
pitch p̃λ(emoi,emoj)

, duration d̃λ(emoi,emoj)
, and energy ẽλ(emoi,emoj)

the other hand, as shown in Fig. 1(b), the predicted emotion is
located close to the actual intermediate emotion if the embed-
ding space is disentangled, so that the desired speech could be
synthesized. Second, it is difficult to guarantee the naturalness
for intermediate emotional speech, because there are no loss
functions or constraints to improve the naturalness. Because of
the limitations mentioned above, it is a challenging task to gen-
erate the desired speech from the grid of non-uniform emotional
latent spaces.

In this work, we propose a method to continuously control
the intensity of emotion using semi-supervised learning. In or-
der to learn the speech of intermediate emotions, we propose
a novel speech mixer, an augmentation method to interpolate
emotion labels and corresponding speech components (pitch,
duration and energy). Since the proposed model is directly
trained with low-level elements, more fine-grained embedding
space can be constructed compared to the conventional emotion
latent space. As shown in Fig. 1(b), the emotion embedding
space is not corrupted by other features like speaker and lin-
guistic. In addition, a discriminator is applied to the variance
adaptor controlling duration, pitch and energy so that the model
generates a more realistic low-level element sequences [18].

Contributions in this study are as follows.

• By using a novel low-level data mixer to generate intermedi-
ate emotion points, the proposed model trained with semi-
supervised learning can generate emotional speech with a
continuous intensity value.

• By applying a discriminator to the variance adaptor, the mel-
spectrogram can be generated well without prediction loss.

The synthesized speech samples are available at https:
//tinyurl.com/2p8vdcnd

2. Method

The overall architecture of the proposed model is shown in Fig.
2. Fastspeech2 [3] is used to generate a mel-spectrogram from
the phoneme sequence. We propose a speech mixer M to gener-
ate pseudo-labels x̃ reflecting intermediate emotion intensities
in a variance adapter. The speech mixer M generates an inter-
mediate low-level elements like pitch p, duration d, and energy
e. Also, discriminators D is applied to the predicted elements
for improving naturalness.

2.1. Speech Mixer

A speech mixer M generates interpolated pseudo-labels x̃ for
intermediate emotion intensities. In order to interpolate any two
emotions (emoi, emoj), emotion speech pair (Semoi , Semoj )
should be sampled from different emotion categories E =
{emo1, emo2, ..., emoK} where K denotes the number of
emotions. In this paper, we used K = 5 and categorical emo-
tions include neutral, happy, sad, angry, and surprise. Its sam-
pling function F can be represented by

Semoj = F (Semoi).

The emotion speech pair are sampled as follows

(emoi = neutral, emoj ∈ E \ {neutral}),
(resp. (emoi ∈ E \ {neutral}, emoj = neutral) ).

To generate a pseudo-label x̃, sampled pair (Semoi , Semoj )
is converted into phoneme-level averaged values, so that the
same sentences have the same length of pitch (pemoi , pemoj ),
duration (demoi , demoj ) and energy (eemoi , eemoj ). Then
speech mixer M generates pseudo-labels x̃λ

(emoi,emoj)
for in-

termediate intensity of emotional speech, given by

M(xemoi , xemoj , λ) = g(λxemoi + (1− λ)xemoj )

= x̃λ
(emoi,emoj),

where xemo ∈ {pemo, demo, eemo} and λ denotes an interpo-
lation weight. g(·) denotes floor function if xemo = demo else
identity function. Specifically, the interpolation weight λ is ran-
domly selected from beta distribution β(0.5, 0.5). For notation
simplicity, we denote xemo = x and x̃λ

(emoi,emoj)
= x̃.

2.2. Generator

As shown in Fig. 2(a), we use FastSpeech2 [3], which con-
sists of a variance adapter, phoneme-encoder, and decoder. The
phoneme encoder receives a phoneme sequence as an input and
outputs an embedding vector. After adding a positional encod-
ing to the embedding vector, the encoder produces a hidden
phoneme embedding Hpho.

Speaker and emotion Look-Up Tables (LUTs) are intro-
duced to extend the existing variance adapter to a multi-speaker
setting like Fig. 2(b). The speaker LUT is assigned to each
speaker and trained to suit the speaker. The emotion LUTs also
are optimized according to the emotion labels. These speaker
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Table 1: Results of emotion intensity recognition and speech quality evaluation. (i) Emotion Intensity Recognition is the recognition
accuracy between two speech samples of different intensity. (ii) Speech Quality Evaluation denotes qualitative metric (MOS) and
quantitative metrics (MCD and F0 RMSE). MOS scores are presented with 95% confidence intervals. MCD and F0 RMSE are evaluated
for categorical emotion speech with ground-truth. A to E represent emotional intensity, A=0.00, B=0.25, C=0.50, D=0.75, and E=1.00.

Emotion Method (i) Emotion Intensity Recognition [%] (ii) Speech Quality Evaluation

A < B B < C C < D D < E MOS ↑ MCD ↓ F0 RMSE ↓
(a) Happy Conventional [11] 44.727 43.636 50.909 47.636 3.528±0.050 5.516 103.764

Proposed 57.455 58.909 58.182 58.182 3.594±0.047 5.478 86.154

(b) Sad Conventional [11] 46.545 44.364 40.364 44.364 3.509±0.052 5.691 82.523
Proposed 57.818 55.273 59.636 58.182 3.654±0.045 5.470 76.468

(c) Angry Conventional [11] 48.364 47.646 45.455 45.091 3.494±0.050 5.796 100.978
Proposed 61.818 66.545 58.182 56.727 3.520±0.049 5.365 82.222

(d) Surprise Conventional [11] 42.909 40.000 52.000 48.364 3.527±0.051 5.280 108.823
Proposed 62.545 64.364 63.636 58.182 3.659±0.046 5.159 84.793

and emotion labels are obtained from the dataset, and the details
of dataset are in Section 3.1. To optimize the phoneme embed-
ding Hpho, the speaker and the emotion LUTs, loss functions
for training each low-level element are described as follows.

Loss of duration Ld consists of mean-square error (MSE)
of logarithm function such that

Ld = E[|| log(d+ 1)− log(d̂)||2], (1)

where d and d̂ are a phoneme-level duration and its predicted
value from a duration predictor, respectively. Similar to loss
of duration Ld, loss functions of pitch Lp and energy Le are
formulated as MSE, given by

Lp = E[||p− p̂||2], Le = E[||e− ê||2], (2)

where p and e are labels of pitch and energy, respectively. p̂
and ê denote predicted values from pitch and energy predictors.
For Eqs. (1) and (2), labels x ∈ {d, p, e} can be replaced with
pseudo-labels x̃ ∈ {d̃, p̃, ẽ}.

2.3. Discriminator

Low-level elements generated by the speech mixer do not exist a
corresponding speech ground-truth, so it is difficult to guarantee
naturalness. Adversarial training scheme is conducted to help
the variance adaptor generate more realistic pitch, duration and
energy sequences. We adopt the least squares GAN [19] loss
for training our proposed model. Discriminators are shown as
D in Fig. 2(a), which are trained adversarially on the predicted
pitch p̂, duration d̂, and energy ê from the variance adapter. The
adversarial loss Ladv

x is as follows:

Ladv
x = E[(x− 1)2] + E[(x̃)2] (3)

2.4. Training Objectives

Network training consists of two phases; (1) learning categori-
cal emotion using the original dataset x, (2) learning intermedi-
ate emotion using pseudo-label data x̃ generated from a speech
mixer M . First, when the model is trained with a categorical
dataset x, Eqs. (1) and (2) are used, and mean-absolute er-
ror (MAE) loss is also computed between a ground-truth mel-
spectrogram y and predicted mel-spectrogram ŷ, given by

Lmel = E[||y − ŷ||1] . (4)

So, categorical loss is defined as

Lcategorical = Lmel + Lp + Ld + Le.

Second, when the network is trained with intermediate emotion
x̃ generated from a speech mixer M , MSE losses are used sim-
ilarly to a categorical loss Lcategorical. However, the adversar-
ial loss is additionally applied to each pseudo-label x̃, instead
of Eq. (4), given by

Ladv = Ladv
p + Ladv

d + Ladv
e . (5)

So, intermediate loss is defined as

Lintermediate = Ladv + Lp̃ + Ld̃ + Lẽ

Finally, total training loss consists of categorical loss and inter-
mediate loss. as follows

Ltotal = Lcategorical + Lintermediate

3. Experiments and Results
3.1. Dataset

We used Emotional Speech Database (ESD) [20] for multi-
speaker models. The ESD covers five emotions (neutral, happy,
angry, sad and surprise) and comprises of 350 parallel utter-
ances from 10 native English speakers and 10 native Chinese
speakers. We only used the English dataset with all emotions
for training and evaluation. It is split into train, validation and
test and 1000 sentences are used as validation and test set to
evaluate the performance.

3.2. Training Details

We transformed the raw waveform into mel-spectrogram and set
hop size to 256 and mel bins to 80. Montreal forced alignment
[21] of version 1.1.4 was used to extract the phoneme duration.
We used pretrained Hifi-gan [22] universal version as a vocoder
and trained the rest parts from scratch. We trained Adam with
β1 = 0.9, β2 = 0.98, ϵ = 10−9 and set learning rate to 10−5.
The model was trained using 64 batch size with 800k steps for
training until convergence and the number of trainable parame-
ters is about 3.5M. All experiments were carried out on a single
RTX2080 GPU and took about 7days for training.

3.3. Model Performance

We conducted a preference test using Amazon Mechanical Turk
to assess emotion intensity recognition. 11 sentences were
randomly sampled per emotion, and 220 participants were in-
volved. First, the raters listen to the same speaker and speech ut-
tered with a neutral emotion, and speech uttered with a specific
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Table 2: Ablation study of discriminator and interpolation weight λ. Scores are average of all emotions. Discrete means that the data
mixing ratio is randomly selected from 0, 0.5, or 1.0. Uniform means that the ratio is sampled from the uniform (0, 1) distribution.

Proposed Weight λ (i) Emotion Intensity Recognition [%] (ii) Speech Quality Evaluation

A < B B < C C < D D < E MOS ↑ MCD ↓ F0 RMSE ↓
(a) w/o discriminator Beta 46.182 44.455 43.636 44.455 3.597±0.023 5.415 77.133

(b) w/ discriminator
Discrete 54.091 50.818 50.818 53.273 3.602±0.023 5.337 79.359
Uniform 43.455 41.455 40.000 41.455 3.589±0.024 5.367 79.562

Beta 59.909 61.273 59.909 57.818 3.607±0.045 5.362 82.409

Figure 3: Plotting pitch contours of (a) conventional method
[11] and (b) proposed method according to emotional intensity.

emotion as a reference. Then, two sentences uttered with dif-
ferent intensities are given, and among the two sentences, raters
should select the one with the stronger emotion. A specific emo-
tion is one of four emotions like happy, sad, angry, or surprise,
and 4 intensity types were tested. There are 4 types such as (0.0
vs 0.25), (0.25 vs 0.5), (0.5 vs 0.75), and (0.75 vs 1.0). For
speech quality evaluation, mean opinion score (MOS) [23] was
measured through a questionnaire to verify the speech natural-
ness. For categorical emotional speech, mel cepstral distortion
(MCD) [24] and F0 root mean square error (F0 RMSE) were
computed for quantitative evaluation. Conventional method
[11] controls emotion intensity through non-linear interpolation
based on GST [4]. As shown in Table 1, the proposed method
outperforms the conventional model [11] in all metrics. Specif-
ically, Table 1(i) shows that our proposed method achieves the
best accuracy for all intensity types. This indicates that the pro-
posed model can synthesize speech well according to the given
intensity scale. In addition, for speech quality evaluation, the
proposed method showed better performance than the conven-
tional model [11] in all emotions as shown in Table 1(ii).

3.4. Ablation Study

We conducted an ablation study to validate the effectiveness of
the discriminator. In the proposed model w/o discriminator at
Table 2(a), all types of emotion intensity accuracy decreased
compared to the model w/ discriminator when λ distribution
is beta (see Table 2(i)). However, for the F0 RMSE metric as
shown in Table 2(ii), the model w/o discriminator represented
better performance than w/ discriminator since the model w/o
discriminator was only optimized to minimize regression losses
related to labels and pseudo-labels. In addition, another ab-

lation study was conducted for different interpolation weight
distributions of speech mixer M . We compared discrete and
uniform distributions as interpolation weight λ. Discrete dis-
tribution means that the mixing ratio λ is randomly sampled
from among 0, 0.5, and 1.0. And uniform means that the ra-
tio λ is sampled from the uniform distribution U(0, 1). The
proposed model trained with the speech mixer using beta distri-
bution β(0.5, 0.5) shows the best performance of the emotion
intensity recognition as shown in Table 2(a)(i). However, the
model with discrete distribution achieved the best MCD and F0
RMSE scores except w/o discriminator (see Table 2(b)(ii)). The
model trained with the discrete distribution can frequently en-
counter categorical labels and be optimized, thus the quantita-
tive metrics are minimized.

3.5. Plotting pitch contours of samples

Synthesized speech samples of the proposed model and conven-
tional model [11] were analyzed. The pitch contour was plotted
for the same speaker and sentence as shown in Fig. 3. The pitch
contour of the proposed model dynamically changed according
to the emotional intensity λ. However, the conventional model
[11] showed similar pitch contours despite the intensity λ being
modified from 0.25 to 0.75. In particular, the proposed model
can synthesize the speech at any emotional intensity (see the
dashed line in Fig. 3(b)) although the conventional model [11]
cannot (see Fig. 3(a)). It means that the pitch sequences can
be controlled by selecting the desired intensity with any contin-
uous value. Thus, we confirmed that our proposed model can
dynamically adjust the intensity of emotions.

4. Conclusion
Improving expression in speech synthesis is very important but
challenging task. In particular, for supervised learning, label-
ing a dataset that can control the emotions of speech is a labo-
rious and difficult task. Therefore, we proposed a model that
can control the emotional intensity with continuous value using
semi-supervised learning. Intermediate low-level elements are
generated for a categorical emotional speech dataset, and it is
used as a pseudo-label for network learning. This study has a
limitation in that the parallel expressive data corpus is neces-
sary. The ground-truth mel-spectrogram does not exist in the
pseudo-labels, so a discriminator is used to supplement it. The
proposed model through experiments showed superior perfor-
mance in emotional intensity control and naturalness.
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