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Abstract
This paper investigates several approaches for the short-term
extrapolation of speech signals. The signal extrapolation meth-
ods are embedded into a nested two-stage spectral analysis-
synthesis system for single-channel noise reduction in hear-
ing aids. They predict additional signal samples in the low-
frequency sub-bands of the first analysis stage and may com-
pensate the additional algorithmic latency of the second, higher-
resolution analysis stage in these bands. We thus achieve a
higher spectral resolution in frequency bands below 3 kHz with-
out increasing the algorithmic latency of the overall system. In
the context of noise reduction, especially female voices ben-
efit from the increased spectral resolution in the lower sub-
bands of the first stage. We show that among the investigated
approaches, both recursive neural-network-based extrapolation
methods provide benefits in conjunction with a noise reduc-
tion algorithm and outperform our baseline linear extrapolation
method.
Index Terms: extrapolation, echo-state network, low-latency,
GRU, analysis-synthesis filter bank system

1. Introduction
Noise reduction is an essential component of many speech com-
munication systems including smartphones and hearing aids. In
the latter application, noise reduction algorithms aim not only
at an improvement of speech quality but must also comply with
strict constraints in terms of computational complexity and al-
gorithmic latency [1, 2, 3]. The minimization of algorithmic la-
tency is especially important for open-fitted hearing aids where
the superposition of direct acoustic sounds and (delayed) ampli-
fied sounds may give rise to spectral distortions [4]. In practice,
this constrains the length of input segments and thus spectral
resolution of the analysis-synthesis system.

In this work we investigate several approaches for spectral
analysis-synthesis that include a signal extrapolation algorithm
to reduce the algorithmic latency. In particular, we use a two-
stage analysis-synthesis system based on the discrete Fourier
transform (DFT) and similar to [5]. There, authors have shown
that an increased spectral resolution at frequencies below 3-4
kHz helps to suppress audible residual noise, especially for fe-
male voices. Therefore, after a first low-resolution filter bank
stage, a second stage is implemented that provides a higher res-
olution in the above frequency range. Although we use a low-
latency analysis-synthesis approach [6] in this second stage,
some additional latency is introduced. It is the objective of the
present work to eliminate this additional latency.

The extrapolation of audio signals and its combination with
a noise reduction system has been considered before, most no-
tably in [7, 8]. In these works the authors use a linear pre-

diction approach to extrapolate signal samples and use these
to extend the DFT frames used in the analysis stage. While
the linear prediction approach serves as a baseline in our work,
we also develop two nonlinear neural-network based methods,
since acoustic speech signals are produced by a complex non-
linear physical system [9], and compare these on data sets with
clean and noisy speech. The extrapolation methods are mod-
ular and detached from the noise reduction (NR) as one might
choose to apply it in selected frequency bins only and a full-
fledged neural network for joint extrapolation and NR might be
too costly to be operated at all times.

2. System overview
Our proposed system is based on the two-stage DFT-based
analysis-synthesis (AS) system introduced in [5] that uses a
second AS stage for the lower frequency bands to resolve the
fundamental frequencies of speech signals and, hence, enhance
the NR performance, especially for female speech. To compen-
sate the additional algorithmic latency of the second stage, we
now place an extrapolator before the second stage to extend the
incoming noisy signal. Fig. 1 shows a block diagram of our
proposed system. The time domain input and output signals are
denoted by x(n) and x̃(n), respectively, whereas the sub-band
signal and the extrapolated samples of the sub-band signal with
sub-band index µ are denoted by xµ(m) and x̂µ(m), where m
is the sub-sampled time step.

2.1. Two-stage analysis-synthesis system

Input signals are sampled at a rate of fs,1 = 16 kHz and pro-
cessed with a standard short-time Fourier transform (STFT) in
both AS stages. The first stage uses a DFT length K1 = 128,
a frame advance R1 = 32 and periodic square-root Hann win-
dows. The effective window length of the analysis and synthe-
sis window are set to Lana,1 = Lsyn,1 = 127, resulting in a
band distance of ∆f1 = 125 Hz, a sub-band sampling rate of
fs,2 = 500 Hz, and an algorithmic latency of τd,1 = 7.875 ms.
The second stage is applied to the lower sub-band signals up to
the sub-band with sub-band index µ′ = 23 that corresponds to
a center frequency of 2875 Hz. We set K2 = 16 and R2 = 1 to
achieve a band distance of ∆f2 = 31.25 Hz within the sec-
ond stage. To reduce the algorithmic latency of the second
stage, we use asymmetric analysis and synthesis windows that
are designed as proposed in [6], with effective window lengths
of Lana,2 = 15 and Lsyn,2 = 3, resulting in an additional la-
tency of τd,2 = 4ms. However, in our experiments described in
Section 3.2.1, we also investigate the performance of the system
with Lsyn,2 = 5 and Lsyn,2 = 7. In general, the algorithmic
latency

τd = (Lsyn − 1) /fs, (1)
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Figure 1: Overview of our proposed two-stage analysis-synthesis system with extrapolation and noise reduction (NR). The input x(n)
is decomposed into K frequency sub-band signals by the first STFT. To compensate the latency of the second stage, each of the lower
sub-band signals up to sub-band index µ′ are extrapolated and then decomposed by a second STFT. The NR is applied within the
second stage as well as on the upper sub-band signals of the first stage. Finally, the last inverse short-time Fourier transform (iSTFT)
reconstructs the output signal x̃(n).

is determined by the effective synthesis window length Lsyn,
where we neglect any buffering or processing time and consider
only the latency induced by the overlap-add synthesis.

2.2. Extrapolation methods

We evaluate and compare several linear and nonlinear extrap-
olation methods within our two-stage AS system. The linear
method uses an auto-regressive (AR) model to predict future
samples for each sub-band signal, separately. The AR model
with NFO filter coefficients extrapolates the sample x̂µ(m+1)
via a linear combination of the last known samples

x̂µ(m+ 1) =

NFO−1∑

i=0

a(i)xµ(m− i). (2)

We update the filter coefficients at each time step m with Burg’s
method [10] using an input vector xµ(m) that contains the past
Np samples of the respective sub-band signal

xµ(m) = [xµ(m), . . . , xµ(m−Np + 1)]T . (3)

NFO and Np are optimized for each sub-band using a model-
based global optimization (MBO) method [11] on a set of 40
clean speech signals (20 female, 20 male) of the LibriSpeech
corpus [12]. Since LibriSpeech contains compressed speech
samples, we select files with a crest factor ≥ 18 dB and a
signal duration ≥ 15 s. The optimized parameters range in
NFO,opt ∈ {5, . . . , 12} and Np ∈ {14, . . . , 30}.

As nonlinear methods, we use two different recursive neural
networks. The first approach comprises an echo-state-network
(ESN) including a recursive least-squares (RLS) adaptive fil-
ter, as described in [13]. The ESN features a feedback net-
work based on a sparse feedback matrix and a nonlinear acti-
vation function that generates diverse signal components which
are then used to approximate each new signal sample via the
adaptive filter. The method has shown excellent results in pre-
vious linear prediction tasks [14] and does not require offline
training. Similar to the linear AR method, we use a separate
ESN for each sub-band signal. The ESN takes an input vector
xµ(m), as described in (3), to compute the nonlinear reservoir
state vector y(m) by

y(m) = fa (g ·Winxµ(m) +Wy(m− 1)) , (4)

where fa is a nonlinear activation (hyperbolic tangent, tanh)
function, g is a constant gain factor, Win is the M ×Np input

weight matrix that connects the input vector with M reservoir
neurons, W is the M×M feedback matrix that connects the M
reservoir neurons of the ESN via a delay unit with each other.
The input weight matrix Win contains uniformly distributed
random values between −1 and 1, whereas the sparse feedback
matrix uses only 10% of the possible neuron connections and
contains uniformly distributed random values between 0 and 1.
In addition, the spectral radius, which is the maximum of all
eigenvalues, of W is set to 0.5. Since the input samples are
complex-valued, we modify the computation of the nonlinear
activation function such that we apply the activation function
only to the absolute value and recombine the output with the
corresponding phase. The output of the ESN is then computed
by an adaptive filter wout(m) with

x̂µ(m+ 1) = wT
out(m)y(m), (5)

where y(m) is a concatenated vector containing the reservoir
state vector and the input vector

y(m) =
[
g · xT

µ (m),yT(m)
]T

, (6)

and wout(m) is adapted via the RLS algorithm. We optimize
the following parameters of the ESN including the RLS algo-
rithm on the same signals and with the same method as the
AR filter and denote the resulting method as NN-ESN: the
number of neurons M , the number of input samples Np, the
RLS regularization parameter ∆, the RLS forgetting factor λ
and the constant gain g. The optimized parameters range in
M ∈ {10, . . . , 22} and Np ∈ {5, . . . , 15} and lead to an aver-
age adaptive filter length of 17 per sub-band. The RLS tuning
parameters and the parameter of the RLS transition matrix, de-
scribed in [14], are set to β = 0.3, q = 0.25 and α = 0.999.

The second nonlinear method is a pre-trained neural net-
work (NN-GRU) with three layers, as illustrated in Fig. 2, and
111279 parameters, in total. The network takes the real and
imaginary (RI) components of the most recent sample of all
lower sub-band signals and predicts the RI components of the
next future sample of each sub-band. The stacked real and
imaginary parts result in an input and output vector dimension
of 47. The input vector is fed to a fully-connected (FC) layer
with 128 neurons and tanh activation followed by a gated re-
current unit (GRU) [15] with 128 neurons and a FC layer with
47 neurons and tanh activation. The predicted future sample
of each of the lower sub-bands can then be obtained by recom-
bining the RI components from the output of the network. The
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Figure 2: Structure of the NN-GRU extrapolator with an input
and output dimension of 47 and a GRU layer.

network is trained on the LibriSpeech 100h dataset [12] using
the ADAM optimizer [16] and the standard mean-squared er-
ror (MSE) loss function. We choose a mini-batch size of 128
and a learning rate λ = 4 · 10−4 that is reduced by 10% ev-
ery 8 epochs. We create the input training data by processing
randomly chosen 3 s snippets of each training signal with the
first analysis-synthesis stage. The target data equals the input
sub-band signals shifted by one sample into the future, so that
the network learns to predict the next upcoming sample of the
sub-band signals (xµ(m) → x̂µ(m + 1)). We evaluate the
network in each epoch using the development set of the Lib-
riSpeech corpus to observe the training progress.

To compare the complexity of the nonlinear extrapolators
to the linear method, we measure the execution time of all ex-
trapolation methods in the proposed system with Lsyn,2 = 3.
While the NN-ESN requires only 60% of the processing time
of the AR method, the NN-GRU takes approximately twice as
long as the AR method.

3. Evaluation
We evaluate the quality of the extrapolation process and the
overall performance of the proposed system in terms of the
short-time objective intelligibility (STOI) measure [17] and the
perceptual evaluation of speech quality (PESQ) measure [18].
Moreover, for our experiments with clean speech signals, de-
scribed in Section 3.1, we also compute the prediction gain

Gp(µ) = 10 log10

(
var{xµ(m)}

var{xµ(m)− x̂µ(m)}

)
, (7)

for each sub-band signal µ, where var{.} computes the variance
of its input, and for the reconstructed time domain signal

Gp = 10 log10

(
var{x(m)}

var{x(m)− x̃(m)}

)
. (8)

For the experiments with noisy speech signals, described in Sec-
tion 3.2, we compute the output signal-to-noise ratio

SNRout = 10 log10

(
var{s(m)}

var{s(m)− x̃(m)}

)
, (9)

where x̃(m) is the reconstructed (enhanced) time domain signal
and s(m) is the respective clean speech signal.

3.1. Extrapolation of clean speech signals

In an initial experiment, we extrapolate 16 clean speech signals
(8 male, 8 female) of the LibriSpeech test set [12] with a crest

factor ≥ 18 dB and a signal duration ≥ 15 s using different
extrapolation lengths. For this purpose, we only use the first
analysis-synthesis stage, extrapolate the lower sub-band signals
and synthesize the time domain signal using the predicted sub-
band samples. To evaluate the effect of the extrapolation more
precisely, we set the higher sub-band signals to zero before re-
constructing the time domain signal.

Fig. 3a-3c show the prediction gain for different extrapola-
tion lengths evaluated on three sub-band signals. The prediction
gains for the remaining sub-band signals are similar to the trend
that is shown in the figure. The prediction gain declines rapidly
for larger extrapolation lengths. Moreover, the extrapolation
achieves higher prediction gains in lower frequency bands. As
a result, the extrapolation length should be set ≤ 4 ms to min-
imize distortions. The NN-GRU shows promising performance
for a short extrapolation length below or equal to 4 ms. How-
ever, this comes at the cost of a higher computational complex-
ity. On the other hand, NN-ESN achieves a similar performance
as the AR method for the aforementioned extrapolation lengths
at a lower computational complexity.

We also evaluate the reconstructed time domain signal, see
Fig. 3d-3f. To remove the higher frequency bands, the reference
signal that is used for the evaluation metrics is processed by the
same AS system but without extrapolation. For PESQ and STOI
the NN-GRU approach shows a more rapid degradation when
the extrapolation length is increased. Focusing at extrapolation
lengths ≤ 4 ms, the NN-GRU outperforms the other methods
with regard to STOI and prediction gain, though it clearly pro-
vides lower PESQ values. We found that the joint extrapolation
of the sub-band signals used by the NN-GRU produces a tonal
artifact in the reconstructed signal with fundamental frequency
of fs,1/R1 = 500 Hz and its harmonics. It is faintly audible
but leads to a lower PESQ value.

3.2. Noise reduction performance

In this section we evaluate the performance of the proposed
system with an algorithmic latency of 7.875 ms (see Fig. 1)
and compare it to two reference systems. As an upper refer-
ence (UpR), we choose a two-stage analysis-synthesis system
with the same parameters, but without extrapolation, resulting
in an algorithmic latency of 11.875 ms. The lower reference
(LowR) system uses a one-stage analysis-synthesis system with
the same parameters as the first stage of our proposed system
and, therefore, has the same algorithmic latency as our proposed
system. To evaluate the contribution of the extrapolation in a
transparent and reproducible fashion, we use a standard (white-
box) frequency-based Wiener filter [19, 20] and the recursive
noise power estimation approach [21] for all three systems. We
evaluate the systems using the same test signals, as described in
Section 3.1, mixed with either babble or white Gaussian noise.

3.2.1. Second-stage synthesis window length

First, we compare different synthesis window lengths Lsyn,2 for
the second stage using input signals mixed with white Gaussian
noise. Since the synthesis window length also affects the shape
of the analysis window and, hence, the frequency resolution,
we aim to find the best trade-off between frequency resolution
of the second stage and distortions caused by the extrapolation.
As seen in Table 1, using a shorter synthesis window provides
equal or better system performance in all metrics.
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Figure 3: Prediction gain for different extrapolation lengths evaluated on the sub-band signals with center frequency a) fc = 250 Hz,
b) fc = 1000 Hz and c) fc = 2000 Hz. d) Prediction gain, e) PESQ and f) STOI evaluated on the reconstructed time domain signal.

Table 1: NR performance for different second-stage synthesis
window lengths Lsyn,2 averaged over all test signals.

Lsyn,2 AR ESN GRU UpR LowR Input

SN
R

ou
t 3 8.69 8.88 9.49 10.15 10.10

5 6.26 6.12 7.07 10.32 10.10 5
7 4.61 4.11 5.00 10.44 10.10

PE
SQ

3 2.11 2.15 2.08 2.11 2.07
5 2.09 2.16 2.02 2.12 2.07 1.80
7 2.05 2.16 1.92 2.13 2.07

ST
O

I 3 80.56 81.07 81.97 82.31 81.68
5 76.36 77.93 80.38 82.45 81.68 81.08
7 72.53 75.01 78.01 82.54 81.68

3.2.2. SNR and gender dependent evaluation

On the basis of the results, described in 3.2.1, we test the sys-
tem at different SNR using the short synthesis window with
Lsyn,2 = 3 and input signals mixed with babble noise. More-
over, we average the results over female and male speakers,
separately, as shown in Table 2. As we can see, the two-stage
system provides a clear benefit for the NR performance in com-
parison to the one-stage system, especially for female speech
signals. Moreover, both of our nonlinear neural-network-based
methods clearly outperform the linear baseline method. For
STOI and SNRout the NN-GRU achieves the best performance
among the extrapolation methods and is close to the upper refer-
ence system in terms of PESQ and STOI. By contrast, the NN-
ESN achieves promising PESQ improvements up to 0.14 MOS
w.r.t. the upper reference system for female speech signals.

4. Conclusions and outlook
We presented different methods for the short-term extrapola-
tion of speech signals and used them in a two-stage analysis-
synthesis system to compensate the algorithmic latency of the
second filter bank stage. Among these methods, our proposed
GRU-based neural network achieves the best performance on
extrapolating clean speech using an extrapolation length of 2 ms

Table 2: NR performance for different SNR.

(a) Averaged over female speakers.

SNR AR ESN GRU UpR LowR Input

SN
R

ou
t 0 dB 4.45 4.40 4.57 4.25 3.97 0

5 dB 7.50 7.90 8.26 8.39 7.87 5
10 dB 10.33 10.51 11.42 12.36 11.80 10

PE
SQ

0 dB 1.68 1.71 1.65 1.66 1.60 1.49
5 dB 2.09 2.16 2.03 2.02 1.96 1.80

10 dB 2.47 2.57 2.43 2.41 2.36 2.14

ST
O

I 0 dB 63.86 64.32 65.49 65.44 64.02 64.35
5 dB 76.39 77.10 76.89 77.00 75.60 76.15

10 dB 84.86 85.74 86.02 86.27 85.24 85.90

(b) Averaged over male speakers.

SNR AR ESN GRU UpR LowR Input

SN
R

ou
t 0 dB 3.95 4.25 4.15 3.89 3.71 0

5 dB 7.05 7.50 7.93 8.21 7.88 5
10 dB 9.50 10.06 11.05 12.17 11.97 10

PE
SQ

0 dB 1.69 1.73 1.73 1.74 1.70 1.62
5 dB 2.03 2.08 2.05 2.04 2.03 1.85

10 dB 2.40 2.46 2.42 2.42 2.41 2.19

ST
O

I 0 dB 64.96 64.76 66.14 66.33 65.38 65.58
5 dB 75.10 75.63 76.92 77.21 76.62 76.89

10 dB 83.34 83.81 85.48 85.78 85.64 85.55

or 4 ms. Moreover, both our NN-based systems achieve promis-
ing benefits for the noise reduction, especially visible for female
speech, and outperform our linear baseline system. Our pro-
posed methods are easily integrable with a low computational
complexity into existing noise reduction systems, e.g. in hear-
ing aids, to improve noise reduction performance without in-
creasing the algorithmic latency. However, the joint extrapola-
tion of the sub-band signals used by our NN-GRU leads to a
faintly audible disturbing tone that rapidly degrades the PESQ
value for larger extrapolation lengths. Thus, low-complexity
networks for extended extrapolation will be the main focus of
future work.
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