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Abstract

In end-to-end speech translation, speech and text pre-trained
models improve translation quality. Recently proposed mod-
els simply connect the pre-trained models of speech and text as
encoder and decoder. Therefore, only the information from the
final layer of encoders is input to the decoder. Since it is clear
that the speech pre-trained model outputs different information
from each layer, the simple connection method cannot fully
utilize the information that the speech pre-trained model has.
In this study, we propose an inter-connection mechanism that
aggregates the information from each layer of the speech pre-
trained model by weighted sums and inputs into the decoder.
This mechanism increased BLEU by approximately 2 points in
en-de, en-ja, and en-zh by increasing parameters by 2K when
the speech pre-trained model was frozen. Furthermore, we in-
vestigated the contribution of each layer for each language by
visualizing layer weights and found that the contributions were
different.

Index Terms: speech translation, machine translation, pre-
trained model

1. Introduction

Speech translation, also known as spoken language translation,
is the process of converting spoken language from one language
to another. The primary objective of speech translation is to en-
able seamless communication between people who speak dif-
ferent languages and it has numerous practical applications in
fields such as international business and tourism.

In recent years, there has been significant progress in
speech translation technology driven by advances in deep learn-
ing and spoken language processing. State-of-the-art speech
translation systems use end-to-end modeling with large scale
self-supervised learning (SSL) models of speech and text
modalities. By combining SSL models of these different modal-
ities, it is possible to efficiently build a speech translation model
with a small amount of data. However, simply connecting SSL
models alone does not fully extract the information processed
by speech SSL models. It is known that semantic, phonologi-
cal, and word-like information is embedded in the intermediate
layer of the SSL speech model [1].

In this paper, we propose the Inter-connection Mechanism,
a method to fully extract information from the SSL model of
speech and utilize it for speech translation. In addition, we also
perform a layer-wise analysis of the SSL model and share our
findings.

2. Related Work
In recent years, there has been a growing interest in using pre-
trained models to improve the performance of speech transla-
tion systems. Pre-trained models are neural network models
that have been trained on large datasets of unlabeled text or
speech data and can be fine-tuned on a smaller task-specific
dataset to achieve high levels of accuracy.

SSL models in speech [2, 3, 4] and text modalities [5,
6] have been shown to be useful for various downstream
tasks, contributing significantly to performance improvements
in speech recognition, speech translation, machine translation,
and more. In particular, significant results have been achieved
in speech translation by combining the speech SSL model with
the text SSL model [7, 8, 9]. However, the research to date has
simply connected the two models and has not been able to fully
extract the information from the speech SSL model.

In this study, we focus on how to connect the SSL mod-
els of speech and text, and propose a method to maximize the
information possessed by the speech SSL model. In addition,
we show that each language provides a different contribution to
each layer.

3. Model Architecture
We constructed our model following the model proposed by
the UPC Translation Group at the International Conference on
Spoken Language Translation (IWSLT) 2022 [9] as the base-
line model. In the baseline model, speech and text pre-trained
models are connected together via the length adaptor. We at-
tempted to improve upon this baseline architecture by adding
the Inter-connection Mechanism as shown in Figure 1.

3.1. Pre-trained Models

Combining a pre-trained model of the speech modality with a
pre-trained model of the text modality is key to achieving high
translation quality for speech translation. Therefore, we use
HuBERT (Hidden-unit Bidirectional Encoder Representations
from Transformers) [3] as the encoder and mBART50 [6] as the
decoder.

• HuBERT consists of a convolutional neu-
ral network (CNN) downsampler and multiple
transformer encoder blocks. HuBERT Base has
12 layers of transformer blocks and HuBERT
Large has 24 layers. The pre-trained model
uses 60-k hours of unlabeled data as training
data and is trained to output generic speech rep-
resentations through self-supervised learning.

• mBART50 is an encoder-decoder transformer
model that is trained by denoising noisy text.
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Figure 1: Inter-connection between pre-trained encoder and decoder

It is also a multilingual model trained with 50
languages. In this study, only the decoder part
is used.

These models are connected as a transformer encoder-
decoder model to form one end-to-end model.

3.2. Length Adapter

Because we connect components of two different modalities to-
gether, the length of the output sequence from the encoder and
the length of the sequence handled by the decoder are different.
To bridge this gap, we downsample the output of the encoder
using a length adaptor (LA). The length adaptor consists of a
series of convolutional layers, which are better connected by
matching the lengths of the series.

3.3. Inter-connection

The intermediate layer of HuBERT contains a wealth of infor-
mation that is important for downstream tasks, such as phoneme
and word recognition. However, the simple connection method
described above cannot fully exploit HuBERT’s performance.
To efficiently utilize the information in the intermediate layer
and input it to the decoder, we propose Inter-connection (Figure
1). This mechanism assigns weights to each transformer layer
in the encoder and aggregates the tensors from the outputs of
each layer. The weights are additional learnable parameters op-
timized through the training. The detailed formula is given in
equation (1).

Ĥ = LayerNorm(
L∑

l

Hlwl) (1)

In this formula, Hl denotes the output tensor of the l-th en-
coder layer, wl represents the weights assigned to the l-th en-
coder layer, and Ĥ represents the output of the inter-connection.
We also apply layer normalization after the weighted aggrega-
tion to stabilize the training.

4. Experiments
4.1. Experimental Settings

4.1.1. Datasets

In this study, we trained a multilingual model that can trans-
late three language pairs: English-German (en-de), English-
Japanese (en-ja), and English-Chinese (en-zh). For training, we
used six corpora, shown in Table 1. MuST-C v2 and CoVoST-
2 are used for en-de, en-ja, and en-zh. In addition, MuST-C
v1, Europarl-ST, and TED-LIUM are used for en-de. Basically,
corpora in Group (a) are used for training the model. Corpora
in Group (b) are the same as the corpora used for training the
baseline model [9] and are used for fair comparison.

Table 1: Training data measured in hours

Group Dataset en-de en-ja en-zh

(a) MuST-C v1 [10] 408h
(a), (b) MuST-C v2 [10] 436h 526h 545h
(a), (b) Europarl-ST [11] 83h
(a), (b) CoVoST-2 [12] 413h 413h 413h
(a) TED-LIUM [13] 415h

Total 1755h 939h 958h

4.1.2. Implementation Details

We employed the transformer encoder-decoder architecture,
where the encoder is initialized by HuBERT Large. The en-
coder consists of a 7-layer convolutional feature extractor and
24-layer transformer encoder. The model is trained on Libri-
Light, a 60-k hour unlabeled speech dataset. The feature ex-
tractor has 512 channels with kernel sizes of 10, 3, 3, 3, 3, 2,
and 2 and strides of 5, 2, 2, 2, 2, 2, and 2. The decoder is ini-
tialized with mBART50 and consists of a 12-layer transformer
decoder. Each layer in the transformer encoder and decoder
has a dimensionality of 1024, feed-forward network dimension
of 4096, 16 heads, rectified linear unit (ReLU) activations, and
uses pre-layer normalization. The length adaptor between the
encoder and decoder is a 3-layer convolutional network with
1024 channels, stride of 2, and uses gated linear unit (GLU) ac-
tivations. The embedding layer and linear projection weights of
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the decoder are shared and have a size of 250,000.
The inputs to the model are waveforms with a 16-kHz sam-

pling rate that are normalized to zero mean and unit variance.
During training, each source audio is augmented [14] (before
normalization) with a probability of 0.8. We train multilingual
models on all the data of Table 1 with a maximum source length
of 400,000 and target length of 1024 tokens. We use gradi-
ent accumulation and data parallelism to achieve a batch size
of approximately 32 million tokens. We use Adam [15] with
β1 = 0.99, β2 = 0.98 and a base learning rate of 2.5 · 10−4.
The learning rate is controlled by a tri-stage scheduler with
phases of 0.15, 0.15, and 0.70 for warm-up, hold, and decay
accordingly, while the initial and final learning rate has a scale
of 0.01 compared to base. We used sentence averaging and gra-
dient clipping of 20. We applied a dropout of 0.1 before every
non-frozen layer and use masking for 10-length time spans with
a probability of 0.2, and masking for 20-length channel spans
with a probability of 0.1 in the encoder feature extractor’s out-
put. The loss is the cross-entropy loss with label smoothing of
0.2.

4.1.3. Parameter Freezing Strategy

We experimented under three types of freezing strategies: Hu-
BERT freezing, LayerNorm and Attention (LNA) fine-tuning,
[9] and full fine-tuning. The baseline model employs LNA fine-
tuning to save memory; we also built a model with parameters
frozen in the LNA strategy for fair comparison with the base-
line.

4.2. Results

4.2.1. Translation Quality

We experimented with evaluating translation quality by build-
ing multilingual models with the three language pairs, en-de,
en-ja, and en-zh using bilingual evaluation understudy (BLEU)
[16] and BERTScore [17]. Our main results are shown in Ta-
ble 2. We used a model in which HuBERT and mBART were
connected by a length adaptor as a baseline [9] and investigated
whether adding inter-connection improves translation quality.
We also compared HuBERT with all frozen parameters and all
fine-tuned parameters. Additionally, for fair comparison, we
compared the LNA fine-tuned model trained by corpora belong-
ing to Group (b) in Table 1.

The results showed that BLEU increased 2.11 in en-de,
2.31 in en-ja, and 1.65 in en-zh, and BERTScore increased
slightly overall when the parameters of HuBERT were frozen.
The overall increase shows that a slight increase in the pa-
rameter numbers significantly improves the performance of the
model. When parameters were frozen by LNA strategy, BLEU
increased 0.28 in en-ja and decreased 0.54 in en-de and 0.43 in
en-zh. When all parameters were fine-tuned, BLEU increased
0.19 in en-de and 0.39 in en-ja and decreased 0.23 for en-zh.
The BERTscore increased slightly in en-de and en-ja and de-
creased slightly in en-zh.

In en-zh, the increase in performance when all parame-
ters were frozen was smaller than those in the other language
pairs, and performance decreased when all parameters were
fine-tuned. This seems to be due to interference between the
importance of the layers required for en-zh and the importance
of the layers required for the other language pairs.

In addition, we attempted to build a bilingual model for
each language; however, the small amount of data resulted in
overfitting and significantly degraded performance.

4.2.2. Parameter Size Analysis

The next question is how well it works for the parameter size.
We performed an experiment under three conditions on the
model in which all HuBERT parameters were frozen. Mod-
els of (1-A) and (1-B) from the conditions listed in Table 2 and
the model with one new transformer block added to the final
layer of HuBERT were compared with BLEU and the number of
parameters. Adding one more transformer block increased the
BLEU by 0.71 points in en-de. This result is smaller than the
increase with the addition of 2.11 points of inter-connections.
Therefore, adding inter-connections is more efficient than sim-
ply increasing the number of parameters in the model. Further-
more, in terms of the parameter size, adding one transformer
block increased the parameter size by 12 M while adding an
inter-connection increased the parameter size by only 2 K. This
result indicates that inter-connection is efficient in two aspects:
performance and parameter size when freezing the pre-trained
model.

Figure 2: Model-by-model comparison with parameter size and
BLEU scores in en-de

4.2.3. Layer-wise Analysis

We investigated whether the required information is different
for each language. For this purpose, we trained lang-specific
bilingual models for each language pair en-de, en-ja, and en-
zh under the condition of HuBERT freezing. Bilingual models
were trained using the corpus shown in the Table 1 for each lan-
guage. The training conditions were the same as those described
in section 4.1.2. Additionally, we visualized the weight of each
layer of inter-connection in Figure 3 and calculated differences
in the layer weights from the multilingual model (1-A) in Table
2 in Figure 4. The difference between the multilingual model
and the bilingual model was computed using the equation (2).

Wdiff = |Wmulti −Wbi| (2)

Wmulti represents the weight assigned to each encoder
layer, and Wbi represents the weight assigned to each encoder
layer. By calculating the absolute value of the difference be-
tween these weights Wdiff , we obtain the difference in weights.

We also calculated the cosine similarity of layer weights
with the multilingual model to quantify the similarity with the
multilingual model in Table 3.
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Table 2: BLEU scores and BERTScores for MuST-C tst-COMMON set

BLEU BERTScore
Model Frozen Corpora en-de en-ja en-zh en-de en-ja en-zh

(1-A) HuBERT-mBART+LA HuBERT (a) 24.68 11.86 20.55 0.577 0.763 0.467
(1-B) HuBERT-mBART+LA+Inter-connection HuBERT (a) 26.79 14.15 22.20 0.591 0.771 0.484

(2-A) HuBERT-mBART+LA [9] LNA (b) 29.27 14.89 24.84 - - -
(2-B) HuBERT-mBART+LA+Inter-connection LNA (b) 28.73 15.17 24.41 0.634 0.785 0.532

(3-A) HuBERT-mBART+LA None (a) 30.48 15.81 24.82 0.644 0.786 0.541
(3-B) HuBERT-mBART+LA+Inter-connection None (a) 30.67 16.22 24.59 0.647 0.786 0.539

Figure 3: Weights of lang-specific models

Figure 4: Difference from the multilingual model of weights on
lang-specific models

As a result, we obtained weights that are close to the mul-
tilingual model. However, the cosine similarity with the mul-
tilingual model in en-ja and en-zh is lower than in en-de. This
is partly due to the larger amount of training in the en-de data
than in en-ja and en-zh. On the other hand, this result also in-
dicates that the importance of the necessary information differs
between languages. Therefore, training a multilingual model
using inter-connection is hampered by the different importance
of each layer between languages. In particular, in en-zh, where
the most significant weight differences are observed in Figure
4, the increase in performance is small under HuBERT freezing
conditions and performance is decreased under full fine-tuning.
It is assumed that this phenomenon is caused by differences in
language pronunciation and grammar.

5. Conclusions
In this study, we constructed an end-to-end speech trans-
lation model with pre-trained models connected with inter-
connection. The inter-connection is a weighted sum aggrega-
tion of hidden states from intermediate layers of the encoder to
maximize the use of the pre-trained encoder’s information. As
a result, the translation accuracy of the three language pairs, en-
de, en-ja, and en-zh, increased by approximately 2 BLEU when
the parameters of the pre-trained encoder were frozen. We also
found that performance can be increased more efficiently than
simply stacking layers and increasing the parameter size. In our
future work, we will consider ways to prevent the overfitting
that occurs when full fine-tuning on small data sets. We will
also investigate the effectiveness of this method in other down-
stream tasks.

Table 3: Cosine similarities of lang-specific models with a mul-
tilingual model

Model Cosine Similarity

en-de 0.9906
en-ja 0.9792
en-zh 0.9694
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M. R. Costa-jussà, “Pretrained speech encoders and efficient
fine-tuning methods for speech translation: UPC at IWSLT
2022,” in Proceedings of the 19th International Conference
on Spoken Language Translation (IWSLT 2022). Dublin,
Ireland (in-person and online): Association for Computational
Linguistics, May 2022, pp. 265–276. [Online]. Available:
https://aclanthology.org/2022.iwslt-1.23

[10] M. A. Di Gangi, R. Cattoni, L. Bentivogli, M. Negri,
and M. Turchi, “MuST-C: a Multilingual Speech Translation
Corpus,” in Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers). Minneapolis, Minnesota: Association for
Computational Linguistics, Jun. 2019, pp. 2012–2017. [Online].
Available: https://aclanthology.org/N19-1202

[11] J. Iranzo-Sánchez, J. A. Silvestre-Cerdà, J. Jorge, N. Roselló,
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