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Abstract
Voice conversion is an increasingly popular technology, and

the growing number of real-time applications requires models
with streaming conversion capabilities. Unlike typical (non-
streaming) voice conversion, which can leverage the entire ut-
terance as full context, streaming voice conversion faces signif-
icant challenges due to the missing future information, resulting
in degraded intelligibility, speaker similarity, and sound quality.
To address this challenge, we propose DualVC, a dual-mode
neural voice conversion approach that supports both stream-
ing and non-streaming modes using jointly trained separate net-
work parameters. Furthermore, we propose intra-model knowl-
edge distillation and hybrid predictive coding (HPC) to enhance
the performance of streaming conversion. Additionally, we in-
corporate data augmentation to train a noise-robust autoregres-
sive decoder, improving the model’s performance on long-form
speech conversion. Experimental results demonstrate that the
proposed model outperforms the baseline models in the context
of streaming voice conversion, while maintaining comparable
performance to the non-streaming topline system that leverages
the complete context, albeit with a latency of only 252.8 ms.
Index Terms: voice conversion, dual-mode convolution,
knowledge distillation, unsupervised representation learning

1. Introduction
Voice conversion (VC) is a technique that transforms a speaker’s
voice into that of another speaker without altering the linguis-
tic content [1]. The advances of deep learning have signifi-
cantly contributed to the rapid development of voice conversion,
evolving the capabilities of generating natural-sounding speech.
VC has been extensively applied in diverse applications includ-
ing privacy protection [2] and movie dubbing [3]. However, the
increasing diversity of VC applications, such as live broadcast-
ing and other real-time communication (RTC) applications, has
led to higher demands for streaming capabilities.

While non-streaming VC models [4, 5, 6, 7] have
demonstrated impressive conversion quality, they require full-
utterance input and are not feasible for real-time applications.
In contrast, despite the sustained efforts in developing streaming
VC models, their performance still falls short when compared to
non-streaming models. This is mainly due to the challenges as-
sociated with processing chunked or framewise input on the fly
and without access to future information. Consequently, its per-
formance may suffer from low intelligibility, poor sound qual-
ity, and inferior speaker similarity.

One promising approach that may alleviate these problems
is to use Intermediate Bottleneck Features (IBF), as discussed
in [8]. Instead of using bottleneck features (BNF) [9, 10]
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from the output of a pre-trained Automatic Speech Recogni-
tion (ASR) encoder, IBF is extracted from the middle layers
of the ASR encoder, with the premise to preserve more infor-
mation to compensate for mispronunciations caused by stream-
ing ASR with degraded performance. However, IBF contains
more timbre of the source speaker, resulting in timbre leak-
age. Apart from enhancing input features, there are alterna-
tive approaches that aim to improve the streaming voice con-
version performance from a model structure perspective. Yang
et al. [11] disentangle speaker timbre and linguistic content
by leveraging vector quantization (VQ) [12], mutual informa-
tion (MI) [13] minimization, and contrastive predictive coding
(CPC) [14], and leverages BNF as additional input to enhance
intelligibility. FastS2S-VC [15] developed a non-autoregressive
sequence-to-sequence model with a novel attention predictor.

To narrow the performance gap between non-streaming and
streaming VC systems, a prevalent strategy is to leverage the
non-streaming system as a teacher to provide guiding signals to
augment the streaming counterpart [8, 15, 16]. Despite the ef-
fectiveness exhibited by this teacher guidance, the majority of
existing approaches rely on a separate pre-trained voice conver-
sion model, thus resulting in a more complicated pipeline.

In this paper, we propose DualVC, a novel dual-mode
VC model that supports both streaming and non-streaming in-
ference. Instead of introducing a pre-trained non-streaming
teacher model, we employ dual-mode convolution to unify the
non-streaming teacher and the streaming student into a single
model and perform joint optimization. Despite the similar dual-
mode joint training approach, it is worth noting that our DualVC
model differs from [16] in the following respects. 1) Unlike the
approach in [16], where the parameters for non-streaming and
streaming modes are shared and have mutual effects, our model
employs distinct parameters for different modes. 2) While the
distillation loss is directly computed between the model out-
puts in [16], our model calculates the loss between intermediate
features. 3) Additionally, we detach the non-streaming mod-
ule during the distillation process to avoid potential interference
from the student model on the teacher model.

Furthermore, we introduce a hybrid predictive coding
(HPC) mechanism to compensate for the absence of future in-
formation in the streaming mode. HPC integrates contrastive
and autoregressive predictive coding methods [14, 17], and en-
courages the encoder to learn a more resilient feature structure
in cases where future information is unavailable.

Finally, to alleviate the problem of error accumulation in
long-sentence inference without future information, we intro-
duce noise to both the input Mel-spectrogram and the gradient
of the autoregressive module. Extensive experiments demon-
strate that the proposed streaming DualVC outperforms the
baseline system, achieving similar conversion quality to the
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Figure 1: The architecture of DualVC

non-streaming topline system with a latency of only 252.8 ms.

2. Proposed Approach
As illustrated in Fig. 1, DualVC is built on a recognition-
synthesis framework, comprising an encoder, a HPC module,
and a decoder. Initially, the encoder of a pre-trained ASR model
extracts BNF from the input spectrogram. These BNFs are then
forwarded to the encoder to further extract contextual informa-
tion. The HPC module, which is only used during the train-
ing phase, facilitates the encoder in extracting more effective
latent representation via unsupervised learning methods. Sub-
sequently, the target speaker embedding is concatenated to the
latent representation and provided as input to the decoder. Fi-
nally, the decoder generates the converted spectrogram.

2.1. Streamable Architecture
The backbone of DualVC is CBHG-AR [18], which consists of
a CBHG [19] encoder and an autoregressive (AR) decoder. To
enable streaming, any components that rely on future informa-
tion must be modified or replaced. Specifically, bidirectional
GRU layers and convolution layers are replaced with unidirec-
tional GRU layers and causal convolution layers, respectively.
In typical convolutional neural networks, paddings are added to
both sides of the input to ensure equal lengths of input and out-
put features. Thus, the convolutional kernel is able to access
historical, current, and future information within its perceptual
field. However, during the streaming inference, future informa-
tion is not available, demanding the usage of causal convolution
layers with all padding shifted to the left of the input, which in-
volves no future information. With unidirectional GRU layers,
the model can infer without relying on any future information,
accepting only the current frame and the last hidden states as
input.

2.2. Dual-mode Convolution
The utilization of causal convolution introduces the disadvan-
tage of missing future information, leading to degraded perfor-
mance. To address this issue, we propose to use dual-mode
convolution in couples with intra-model knowledge distillation.

In our proposed model, we adopt a modified variant of the
depthwise separable convolution [20] as the basic convolution
layer, in which a depthwise convolution layer is sandwiched be-
tween two pointwise convolution layers, followed by a dropout
layer at the end. The dual-mode convolution block consists of
two parallel basic convolution layers, one of which is causal
for streaming mode and the other non-causal for non-streaming
mode. All convolution layers in the backbone model are re-

placed with the dual-mode convolution block, and we forward
the model twice using two modes respectively during training.
To bring the streaming intermediate representation closer to the
non-streaming one, we calculate the loss between the stream-
ing encoder output Z and the non-streaming encoder output Ẑ.
Since both modes are trained together without relying on a pre-
trained teacher model, we refer to this process as intra-model
knowledge distillation. The knowledge distillation loss is for-
mulated as

Ldistill = SmoothL1Loss(Z, detach(Ẑ)), (1)

where the SmoothL1Loss is the smoothed version of L1 loss
defined in Fast R-CNN [21] and measures the element-wise dif-
ference between Z and Ẑ. Ẑ is detached in order to bring the
output of streaming mode closer to non-streaming mode, with-
out affecting non-streaming mode.

Dual-mode convolution not only allows a single model to
be used for both streaming and non-streaming scenarios, but
also enhances the performance of the streaming convolution
by using the output of non-streaming convolution as guidance
during training. Dual-mode models have been investigated in
the literature. Dual-model ASR models [22, 23] employ dy-
namic chunk size to train monotonic transformer modules and
use shared weight to perform causal and non-causal convolu-
tions, improving the performance in both streaming and non-
streaming cases. A previous study on streaming voice conver-
sion [16] also adopts the weight-sharing strategy, while the con-
volutional kernel parameters with future receptive fields are dis-
carded during streaming inference by shrinking kernel size. In
contrast, our approach utilizes distinct convolutional layer pa-
rameters for streaming and non-streaming respectively. As ei-
ther streaming or non-streaming convolution is selectively uti-
lized during inference, the extra parameters incur zero compu-
tation overhead. Regarding the dual-mode decoder, distillation
loss is unnecessary since its output is directly bounded by the
ground-truth Mel-spectrogram.

2.3. HPC for Unsupervised Latent Representation Learn-
ing

Besides using dual-mode convolution with intra-model knowl-
edge distillation, we aim to further improve the conversion
quality by enhancing the latent representation extracted by the
CBHG encoder. To this end, we propose HPC consisting of
CPC [14] and Autoregressive Predictive Coding (APC) [17],
which are unsupervised representation learning methods.

CPC employs an autoregressive-based g-net to extract the
aggregation Rk = {rk,1, rk,2, · · · } from Z and is trained
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with InfoNCE loss [24]. By using rk,t as input, the g-net
distinguishes positive from negative samples in future m steps
[zk,t+1, zk,t+m], thus encouraging the latent representation Z
to capture better feature structure. Different negative sample
selection methods affect what is encoded in the representation,
thus the important parts of the features can be extracted and
unwanted parts can be discarded using prior knowledge. On
the other hand, APC is an autoregressive model that predicts
[zk,t+1, zk,t+m] directly by minimizing the L1 loss. Contrary to
CPC, APC does not use prior knowledge to select negative sam-
ples for representation learning, allowing it to preserve more
information with better flexibility.

To leverage the strengths of both CPC and APC, we propose
a hybrid approach called HPC, which is shown in Fig. 2. HPC
adopts separate g-nets for CPC and APC, and performs classifi-
cation between positive and negative samples as well as straight
predictions. Although future information cannot be acquired
during streaming inference, the common feature structure cap-
tured by the HPC module allows the model to infer its content
to some extent.

The HPC loss can be formulated as:

LHPC = LCPC + LAPC (2)

In the experiment section, we will show that HPC provides a
more comprehensive and robust representation of the content
information, improving the effectiveness of the streaming voice
conversion.

2.4. Noise Robust Autoregressive Decoder

We utilize an autoregressive structure for the decoder due to its
exceptional generative capabilities, and it can generate based
solely on historical information as input. However, we observe
that the conversion quality tends to decline over time due to
the accumulation of errors in the autoregressive process for up-
stream features that have already incurred losses. This chal-
lenge is especially severe in streaming models where the input
audio is considered to have infinite length. Hence, it is crucial
to enhance the robustness of the AR structure.

In this paper, we propose a novel data augmentation ap-
proach that combines input feature augmentation and gradi-
ent augmentation to reduce the mismatch between the low-
quality Mel-spectrogram of the actual input and the high-quality
ground truth Mel-spectrogram used in training. By adding nor-
mally distributed noise n ∈ N (0, 1) to the ground truth input
of the AR, we reintroduce features with errors in the autoregres-
sive process in the following step. Also, noise n̂ ∈ N (0, 10−6)

is added to the gradient of the AR module during training to
further improve robustness.

The overall objective function consists of three parts:
Ldistill and LHPC are described above, and Lrec is the recon-
struction loss calculated between ground truth Mel-spectrogram
Y and generated one Ŷ 1.

Lrec = MSELoss(Y, Ŷ ) (3)

L = Ldistill + LHPC + Lrec (4)

3. Experiments
In the experiments, all testing VC models were trained on an
internal Mandarin corpus, containing 20000 neutral utterances
uttered by 20 speakers, with each speaker contributing 1000 ut-
terances. One male and one female speaker were reserved as
the target speakers for voice conversion tests. 10 clean and 10
noisy clips are used as source recordings. The selected record-
ings were then converted to the two target speakers using the
proposed model and all comparison models to further perform
evaluations. All the speech utterances are resampled to 16 kHz.
Besides, tempo augmentation was adopted to enrich prosody di-
versity [10], using a random multiplier of 0.8-1.5. During train-
ing, augmented and original features were fed to the VC model
alternatively [25].

Mel-spectrogram and BNF were computed at a frame
length of 50ms and a hop size of 12.5ms. The ASR system for
BNF extraction was Fast-U2++ [26] implemented by WeNet
toolkit [27], and trained on a Mandarin ASR corpus Wenet-
speech [28]. To reconstruct waveform from the converted Mel-
spectrograms, we use DSPGAN [29], which is a robust univer-
sal vocoder based on the time-frequency domain supervision
from digital signal processing (DSP).

To evaluate the performance of the proposed model in
streaming voice conversion, IBF-VC [8], which is also built on
the recognition-synthesis framework, was selected as the base-
line system. Since IBF-VC is improved in terms of input fea-
tures and knowledge distillation, there are no specific require-
ments for the structure of the model itself, we also use CBHG-
AR as the backbone to reimplement IBF-VC for a fair com-
parison. The base CBHG-AR model with no modification and
use full-utterance input is treated as the topline model, while
we simply replace the convolution layers with the causal ver-
sion to form a naive streaming implementation as the bottom-
line model. As a dual-mode model, both streaming and non-
streaming modes of DualVC were evaluated in the experiments.

3.1. Subjective Evaluation

We conducted Mean Opinion Score (MOS) tests to evaluate the
naturalness and speaker similarity of different models. The nat-
uralness metric mainly considers intelligibility, prosody, and
sound quality. A higher naturalness MOS score indicates the
converted speech sounds more human-like. In both MOS tests,
there are 20 listeners participated. Particularly for the speaker
similarity test, we use the target speaker’s real recording as the
reference. We recommend the readers listen to our samples2.

3.1.1. Speech Naturalness

The NMOS results presented in Table 1 indicate that our pro-
posed DualVC can achieve the best performance in speech nat-

1Note that we compute LHPC and Lrec for both the streaming and
non-streaming mode

2Demo: https://dualvc.github.io/
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Table 1: Comparison of the dual-mode DualVC with IBF-VC, topline, bottomline, and ablation models regarding speaker similarity
and speaker naturalness MOS with confidence intervals of 95% under 2 voice conversion scenarios. NMOS denotes naturalness MOS,
and SMOS denotes speaker similarity MOS. A higher value means better performance.

Clean Noisy Overall
NMOS ↑ SMOS ↑ CER(%) ↓ NMOS ↑ SMOS ↑ CER(%) ↓ NMOS ↑ SMOS ↑ CER(%) ↓

Topline 3.98±0.03 3.89±0.04 8.7 3.83±0.02 3.80±0.05 10.1 3.91±0.02 3.84±0.02 9.4
IBF-VC [8] 3.79±0.03 3.76±0.02 12.7 3.68±0.03 3.71±0.02 14.9 3.78±0.05 3.74±0.05 13.8
Bottomline 3.32±0.04 3.57±0.02 20.9 3.21±0.03 3.52±0.04 23.2 3.26±0.03 3.55±0.03 22.0
DualVC (non-streaming) 4.04±0.03 3.90±0.03 8.2 3.87±0.04 3.82±0.02 9.8 3.96±0.03 3.86±0.02 9.0
DualVC (streaming) 3.83±0.03 3.81±0.03 10.3 3.76±0.04 3.74±0.03 11.4 3.80±0.03 3.81±0.02 10.9

-Dual mode 3.44±0.04 3.70±0.04 17.2 3.37±0.03 3.60±0.04 18.9 3.41±0.05 3.65±0.04 18.0
-CPC 3.74±0.05 3.78±0.02 11.6 3.65±0.04 3.70±0.03 13.0 3.70±0.04 3.74±0.02 12.3
-APC 3.71±0.03 3.76±0.04 12.0 3.63±0.03 3.73±0.04 13.7 3.67±0.02 3.75±0.03 12.9
-HPC 3.68±0.04 3.75±0.04 12.8 3.53±0.03 3.64±0.04 14.5 3.61±0.02 3.70±0.03 13.7
-AR noise 3.65±0.04 3.76±0.04 13.4 3.52±0.02 3.67±0.05 16.1 3.59±0.05 3.72±0.05 14.8

uralness. Specifically, with clean input, streaming DualVC out-
performs IBF-VC and achieves a MOS score close to the topline
model. The non-streaming DualVC even exceeds the topline
model with the additional HPC module, showing the strong ca-
pability of unsupervised learning strategies. While all models
show different degrees of performance degradation when ac-
cepting the noisy input, DualVC demonstrates minimal degra-
dation, proving its superior robustness.

3.1.2. Speaker Similarity

The results of SMOS tests across different models are also
shown in Table 1. In accordance with the naturalness met-
rics, for the speaker similarity, the streaming DualVC technique
attained results that were inferior only to the top-performing
model. Although a decrease in performance was noticed for the
noise input condition, DualVC sustained its standing. In light
of the speaker similarity and naturalness performance, the Du-
alVC method exhibits a remarkable superiority for streaming
voice conversion.

3.1.3. Ablation Study

To investigate the importance of our proposed methods in Du-
alVC, three ablation systems were obtained by dropping dual-
mode convolution, HPC module and noise-augmented training
of autoregressive decoder. These systems are referred to as -
Dual-mode Conv, -HPC and -AR Noise, respectively. Note that
the knowledge distillation loss is also discarded when we get
rid of the dual-mode convolution. To demonstrate the advan-
tages of combining CPC and APC, we carried out additional
experiments where either CPC or APC is omitted, denoted as
-CPC and -APC, respectively. As shown in Table 1, the re-
moval of these methods brings obvious performance decreases
with respect to both speech naturalness and speaker similarity.
Notably, the elimination of the dual-mode convolution brings
the most significant decline, approaching the performance of
the bottom line. This observation demonstrates that the non-
streaming model is an extremely strong guide for the streaming
model.

3.2. Objective Evaluation

3.2.1. Intelligibility Evaluation

We utilized the same pre-trained ASR model for extracting BNF
and recognizing the source speech, converted clean, and noisy
clips. To obtain more accurate results, a larger set of 200 sam-
ples was tested. The character error rate (CER) is also reported
in Table 1. The CER for source speech is 6.0% and 8.4% for

Table 2: Computation & Real-time Metrics of DualVC.

RTF Latency (ms) FLOPs (G)
ASR 0.26 41.6 8.4
DualVC 0.12 19.2 4.7
Vocoder 0.20 32.0 5.2
All 0.58 92.8 18.3

clean and noisy clips, respectively. We can see that the bottom-
line obtains the highest CER, indicating bad intelligibility. In
contrast, streaming DualVC achieves a CER close to the topline,
and both systems induce a small CER increase compared to the
source speech, demonstrating its ability to maintain good intel-
ligibility despite the lack of future information.

3.2.2. Computational Efficiency Evaluation

In this study, we considered three major metrics to assess per-
formance: real-time factor (RTF), latency, and floating point
ops (FLOPs). The results are shown in Table 2. RTF is a com-
mon measure of model inference speed that expresses the ratio
between model inference time and input feature duration. To
meet real-time requirements, the RTF needs to be less than 1,
and the RTF of our complete pipeline on a single Intel Xeon
Silver 4210 core was 0.58. Latency is defined as the interval be-
tween the time of user input and model output, which consists
of three parts: model inference, input waiting, and network la-
tency. With network latency not taken into account, the system
latency can be expressed as

Latency = chunksize× (1 +RTF ). (5)

With a chunk size of 160 ms and a model inference latency
of 92.8 ms, the total latency was calculated to be 252.8 ms.
FLOPs were used to quantify the computational complexity of
the model, and our DualVC model had a FLOP value of 5.2 G,
whereas the one for the whole pipeline was 18.3 G.

4. Conclusions
In this paper, we proposed a dual-mode voice conversion model
(DualVC) to address the challenge of limited future informa-
tion in real-time applications. The DualVC model utilizes dual-
mode convolution with intra-model distillation, and hybrid pre-
dictive coding consisting of CPC and APC for unsupervised
representation learning to enhance the conversion quality. Ex-
periments showed that streaming DualVC outperformed the
baseline system and achieved similar performance to the topline
system with a latency of only 252.8 ms.
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