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Abstract
Parsing spoken dialogue presents challenges that parsing text
does not, including a lack of clear sentence boundaries. We
know from previous work that prosody helps in parsing sin-
gle sentences [1], but we want to show the effect of prosody
on parsing speech that isn’t segmented into sentences. In ex-
periments on the English Switchboard corpus, we find prosody
helps our model both with parsing and with accurately iden-
tifying sentence boundaries. However, we find that the best-
performing parser is not necessarily the parser that produces
the best sentence segmentation performance. We suggest that
the best parses instead come from modelling sentence bound-
aries jointly with other syntactic boundaries.

1. Introduction
Parsing spoken dialogue poses unique difficulties, including
speech disfluencies and a lack of defined sentence boundaries.
Because of these difficulties, current parsers struggle to accu-
rately parse English speech transcripts, even when they handle
other English text well. Research has shown that prosody can
improve parsing performance for speech that is already divided
into sentence-like units (SUs)[1, 2].1

In this work, we hypothesize that prosodic features from
the speech signal will help with parsing speech that isn’t seg-
mented into SUs, by improving the parser’s ability to find SU
boundaries. We test this hypothesis by inputting entire dialog
turns to a neural parser without SU boundaries. These turns re-
semble the input a dialog agent would receive from a user. We
try two approaches: an end-to-end model that jointly segments
and parses input, and a pipeline model that first segments and
then parses the input. To our knowledge, there hasn’t been pre-
vious research on combining SU segmentation and parsing into
a single task. Following Tran et al.[1, 2] (henceforth, T18 and
T19), we consider two experimental conditions for each model:
inputting text features only, and inputting both text and prosodic
features extracted directly from the audio signal. We also follow
them in using the Switchboard corpus of English conversational
dialogue [4].

Although overall parse scores are lower for parsers that
don’t have access to gold standard SU boundaries, our main
hypothesis holds: that parsers using both text and prosodic fea-
tures are more accurate than those using text alone. Unsurpris-
ingly, the end-to-end model performs parsing better than the
pipeline model because it doesn’t suffer from error propagation.
We expected to find that gains in parsing quality would come

1We follow Kahn et al. (2004) [3] in using the term ‘sentence-like
units’ rather than ‘sentences’ throughout, since conversational speech
doesn’t always consist of syntactically complete sentences.

primarily because models with access to prosody would per-
form SU segmentation better. We do find that prosody helps all
models improve their SU segmentation. However, the pipeline
model produces much better segmentation scores than the end-
to-end model, and yet it still does worse at parsing. In Section 5,
we discuss why segmentation and parsing quality do not always
correlate in this task. However, even though the best parses and
segmentations are not always produced by the same model, all
models perform better at both tasks with prosodic information.

Our primary contributions are:

• We build an end-to-end model that jointly performs SU seg-
mentation and parsing.

• We show that prosodic features are helpful for both SU
segmentation and parsing, whether using an end-to-end or
pipeline model.

• We show that an end-to-end model performs parsing better
than a pipeline model, specifically because the end-to-end
model is able to model SU boundaries jointly with other con-
stituent boundaries.

2. Background: prosody and syntax
Prosodic signals divide speech into units [5]. The location
and type of these prosodic units are determined by informa-
tion structure [6], disfluencies [7], and to some extent, syntax
[8]. Some psycholinguistic research shows that in experimen-
tal conditions, speakers can use prosody to predict syntax (e.g.,
[9]). However, Cutler et al. [8] argue that English speakers of-
ten “fail to exploit” this prosodic information even when it is
present, so it isn’t actually a signal for syntax in practice. Many
computational linguists have experimented with this possible
link between syntax and prosody by incorporating prosody into
syntactic parsers, which improves performance in some cases,
but not all (e.g., [10, 11, 12, 1]).

Prosody’s mixed record may be because units below the
SU don’t always coincide with traditional syntactic constituents
[13, 14]. In fact, the only prosodic boundaries that consistently
coincide with syntactic boundaries are the ends of SUs [15].
Prosodic boundaries at the end of SUs are more distinctive,
with longer pauses and more distinctive pitch and intensity vari-
ations, making prosody a reliable signal for SU boundaries, but
less so for lower-level syntactic structure.

Some researchers have used prosody to help in SU bound-
ary detection. Examples of SU segmentation models that bene-
fit from prosody include [16, 17, 3, 18], who all used traditional
statistical models (e.g., HMMs, finite state machines, and deci-
sion trees), and [19], who used a neural model.

INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

2633 10.21437/Interspeech.2023-952



3. Task and model
3.1. Task

In order to test our hypothesis that prosody is helpful for both
SU segmentation and parsing, we design a model to parse
whole dialog turns, rather than just one SU at a time. Our
parser follows the general design of T19, but because it parses
turns, it must perform both SU segmentation and parsing. We
approach this task in two ways: an end-to-end model (SU-
segmentation and parsing done jointly) and a pipeline model
(SU-segmentation done before parsing). Both models return
constituency parses for each turn in the form of Penn Treebank
(PTB)-style trees. In order to keep the output in the form of
valid PTB trees for the end-to-end-model, we add a top-level
constituent, labelled TURN, to all turns, however many SUs they
consist of. As we discuss in Section 6, this innovation allows
the end-to-end model to treat SUs in the same way that it treats
other syntactic units.

3.2. Model architecture

For both the end-to-end model and the pipeline parser, we use
T19’s parser, extending the code base described in their paper.2

The model is a neural constituency parser based on [20]’s text-
only parser, with a transformer-based encoder and a chart-style
decoder based on [21] and [22]. The text is encoded using 300-
dimensional GloVe embeddings [23].

Acoustic features corresponding to pitch, intensity, and
pause and word duration are added to the text input by con-
catenating them directly with each token embedding. While the
pause and word duration features are token-level in their raw
form, the pitch and intensity features are extracted from frames
every 10 ms in the speech signal (see Section 4). In order to
be able to concatenate all acoustic features with token embed-
dings, T19 add a CNN to produce fixed-length representations
for the pitch and intensity features at the token level. Several
CNN filters of different sizes perform one-dimensional convo-
lution of the pitch and intensity features for each token, allow-
ing the CNN to integrate information on various time scales (see
Table 1 for exact filter sizes). The output of each filter is then
max-pooled to create a fixed-dimension representation of pitch
and intensity features for each token. All of the prosodic fea-
tures (pitch, intensity, word and pause duration) are then con-
catenated with the text embedding for the corresponding token,
and then input to the encoder. The CNN is trained along with
the encoder-decoder model.

For the pipeline, we first segment into SUs, and then parse
the resulting SUs. For segmentation, we use a modified version
of the parser: With the same encoder, we change the decoder to
only do sequence labeling, marking tokens as either SU-internal
or SU-final. We then parse the predicted SUs. Rather than us-
ing a parser that was trained on gold SUs, we train a parser on
the SUs that the segmenter predicted on the train set. This al-
lows the model to learn to produce the parses on imperfectly
segmented SUs and leads to better parsing scores. To reduce er-
ror propagation in the pipeline model, when we construct these
parses for training, we insert a node labeled BLANK dominating
any incorrectly predicted SUs. We remove any BLANK nodes
the parser predicts in post-processing, essentially allowing the
parser to fail to predict an SU where the segmentation step pre-
dicts one. However, the error propagation issues remain largely
unchanged by this procedure.

2Original: https://github.com/trangham283/prosody nlp; our ex-
tended code: https://github.com/ekayen/prosody nlp.

4. Experimental set-up
4.1. Data

We use the American English corpus Switchboard NXT (hence-
forth SWBD-NXT) [4] to allow us to compare performance
with T18 and T19 [1, 2]. This is a relatively small corpus com-
pared to many datasets used today, but it remains the largest
speech corpus with hand-annotated constituency parses. While
other corpora with hand-annotated dependency parses exist
(e.g., UD corpora such as [24] and [25]), these are all signifi-
cantly smaller than Switchboard NXT. SWBD-NXT comprises
642 telephone dialogues between strangers, totalling 55k dialog
turns. For training, development, and testing, we use the split
described in [26], which is a standard split for experiments on
SWBD-NXT (e.g., [12, 1]). The training set makes up almost
90 percent of the data (49k turns), and the development and test-
ing sets make up slightly more than 5 percent each (3k turns).
These dialogues are transcribed and hand-annotated with Penn
Treebank-style constituency parses, and have no punctuation.

Not all turns in the SWBD-NXT contain multiple SUs: of
a total 60.1k turns, 35.8k consist of a single SU. The average
number of SUs per turn is 1.82. To avoid memory problems
from too-long inputs, we filter out two problematically long
turns from the training set (out of 50k turns). We do not have to
remove any turns from the development or test sets. This leaves
the maximum turn length at 270 tokens. We also remove any
turns for which some or all of the audio is missing.

4.2. Acoustic features

We extract acoustic features for pitch, intensity, pause dura-
tion, and word duration from the audio, largely following T18’s
feature extraction procedure, noting any devations below. The
alignment of tokens to audio is annotated in the Switchboard
NXT corpus. We extract pitch and intensity features from the
speech signal with Kaldi [27], using 25ms frames every 10ms.
We extract three pitch features: warped Normalized Cross
Correlation Function (NCCF); log-pitch with mean subtraction
over a 1.5-second window, weighted by Probability of Voicing
(POV); and the estimated derivative of the raw log pitch. For
further details on these features, see Ghahremani et al. (2014)
[28]. For intensity features, we start with 40-dimensional mel-
frequency filterbanks and calculate the log of the total energy,
normalized by the maximum total energy for the speaker over
the course of the dialog. We also calculate this value for the
upper half and lower halves of the 40 mel-frequency bands.

Pause and word duration features are based on token times-
tamp annotations. Each word’s pause feature corresponds to the
pause that follows it, which we categorize into one of six bins
by length in seconds: p > 1, 0.2 < p ≤ 1, 0.05 < p ≤ 0.2,
0 < p ≤ 0.05, p ≤ 0 (see below), and pauses where we are
missing time-aligned data. Following T18, the model learns 32-
dimensional embeddings for each pause category. Unlike T18,
we opt to calculate pauses based on all words in the transcript,
not just the words for a single speaker at a time. This means that
at a turn boundary, we calculate the pause as the time between
the end of one speaker’s turn and the beginning of the other
speaker’s turn. This introduces negative-valued pauses, where
one speaker interrupts the other, and so we choose to place these
negative-valued pauses in the same bin as pauses with length 0.

We normalize word duration features, since we are inter-
ested in the relative lengthening or shortening of word tokens,
rather than their raw length. Following the code base for T18,
we perform two different types of normalization: normalizing
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each token’s raw duration by the mean duration of every occur-
rence of that word type; and normalizing the token’s raw dura-
tion by the maximum duration of any word in the input unit.

We also considered using features for voice quality (e.g.,
harmonics-to-noise ratio, zero-crossing rate) since creaky voice
has been observed to mark sentence boundaries in some vari-
eties of American English [29]. However, we found no benefit
from using these voicing features, so we omit them in the model
we report on here.

4.3. Training

Unless stated otherwise, we train each model on five random
seeds, and report the mean of each metric. To determine the
statistical significance of differences in performance, we use
bootstrap resampling [30], resampling 105 times.

We use the hyperparameters specified in T19’s code base,
documented in Table 1. Each model is trained for 50 epochs
on a single Nvidia GTX 1080 GPU, which takes approximately
7 hours per model. The text-only models have approximately
23M trainable parameters each, while the text+prosody models
have approximately 20M trainable parameters.

4.4. Evaluation

We report two metrics for both the pipeline and end-to-end
models: parse and SU segmentation F1 scores. Parse F1 is cal-
culated on the whole turn using a Python implementation of
EVALB (link to be included in non-anonymous version). We
don’t count TURN constituents, so that turn-based and SU-based
parse scores are comparable. The SU segmentation F1 score
is calculated on all turn-medial SU boundaries; turn-final SU
boundaries are not counted. In order to calculate the SU seg-
mentation F1 score for the end-to-end model, we consider ev-
ery node that is a direct child of the tree’s top TURN node to be
an SU. That is, SUs are just one kind of syntactic constituent,
differentiated only by their location in the tree.

Hyperparameter Value
Epochs 50
Text embedding dim. 300
Max. seq. length 270
Dropout 0.3
Num. layers 4
Num. heads 8
Model dim. 1536
Key/value dim. 96
Num. CNN filters 32
CNN filter widths 5, 10, 25, 50

Table 1: Model hyperparameters, based on T19.

5. Results and discussion
Experiments with the end-to-end model show that prosody
shows a statistically significant effect on parsing performance,
though this effect is small (see Table 2). In the pipeline model,
the effect of prosody is larger: The difference in parse F1 score
from adding prosody is 0.94 for the pipeline model, where it
is only 0.52 for the end-to-end model. However, the pipeline
model’s parse F1 score is lower than the end-to-end model’s.

We make one modification to the end-to-end model as well
in order to improve its segmentation performance. In the end-
to-end model, poor segmentation performance is often caused
when the model predicts many more children for the top node

Gold SUs E2E Pipeline
Dev. set:
Text only 90.31 85.70 84.34
Text+prosody 90.90 86.21 85.28
Test set:
Text only 90.29 86.03 84.68
Text+prosody 90.65 86.55 85.62

Table 2: Development and test set parsing F1 score of the end-
to-end and pipeline models (and for comparison, a model that
receives gold standard SUs as input). Results averaged over 5
random seeds.

E2E Pipeline
Dev. set:
Text only F1 66.32 63.74

Text+prosody
{ F1 72.95

69.46
76.92

77.38
79.44
75.69

Prec
Rec

Test set:
Text only F1 71.01 66.98
Text+prosody F1 72.94 77.38

Table 3: Segmentation F1 score of the turn-based models com-
pared to the SU-based model, with precision and recall given
for some cases, averaged over 5 random seeds.

than it ought. Since we consider each direct child of the top
TURN node to be an SU predicted by the end-to-end model,
these highly branching nodes lower segmentation scores. The
parser actually creates these multiply branching nodes by pre-
dicting a series of binary branching DUMMY nodes, which are
collapsed in post-processing into a single n-ary node. In order
to discourage oversegmentation, we experiment with weighting
DUMMY nodes with a greater loss penalty. We found that adding
a weight of 0.5 for each DUMMY node led to improved parse
and SU segmentation quality. While weights higher than 0.5
continue to improve segmentation quality, particularly segmen-
tation precision, as expected, they begin to harm parse quality.

However, even with this modification (which is included in
all reported results), the end-to-end model underperforms the
pipeline model on segmentation, which is surprising, given that
it parses better than the pipeline model. The end-to-end model’s
higher parse performance is simple enough to explain in isola-
tion: In the pipeline model, errors propagate from the segmenta-
tion step to the parsing step; this is impossible in the end-to-end
model. But the end-to-end model’s much lower segmentation
score complicates the error propagation account.

We can explain this discrepancy by examining the kinds of
errors each model makes. First, the end-to-end model tends not
to predict top nodes for each gold SU, instead connecting lower
nodes in the tree directly to the TURN node, leading to over-
segmentation, as shown in Figure 1a. The pipeline model tends
instead to undersegment. This tendency is shown in the end-to-
end and the pipeline models’ similar segmentation recall, com-
pared to the end-to-end model’s very low precision, shown in
Table 3. The examples in Figure 1 show the effect this has on
segmentation: The end-to-end example has a segmentation F1
score 57.1%, where the pipeline has a score of 66.7%.

However, when scoring parses, the end-to-end model is pe-
nalized much less. Both models omit three nodes from the tree
in Figure 1. However, the pipeline model also predicts sev-
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(a) Gold parse. The nodes shown in green are omitted by both the end-to-end and pipeline models.
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(b) Parse predicted by the pipeline model. The nodes shown in red are incorrect.

Figure 1: Comparison of gold parse to the pipeline’s predicted tree. The end-to-end model’s tree isn’t shown because the only differ-
ences between it and the gold parse is the omission of the three nodes that are highlighted in green in the gold parse. This example has
been edited for length and clarity, and part-of-speech tags have been omitted.

eral nodes high up in the tree that the end-to-end model does
not. This leads to a much lower parse F1 score for the pipeline
model: 69.2%, compared to the end-to-end model’s 88.0%.

In fact, the pipeline’s better segmentation seems to ac-
tively worsen its parse score. The pipeline’s undersegmenta-
tion comes from predicting nodes that dominate entire predicted
SUs — like the S node in Figure 1b. Because the S node erro-
neously spans the entire turn, it is more likely that its VP daugh-
ter will also span too many nodes, as it does in this example.

The phenomena in this example affect performance on the
whole development set, as shown by the interaction of parse
precision and segmentation accuracy. On examples where the
SU boundaries are incorrectly predicted, as in Figure 1, the
pipeline model predicts many more incorrect nodes, and its
parse precision declines by 5.22 percentage points on the de-
velopment set (from 85.72% to 80.50%). By comparison, the
end-to-end model’s parse precision is less affected by segmen-
tation quality – it only drops by 3.96 percentage points (from
86.20% to 82.24%).

These results suggest that the end-to-end model’s superior
parsing ability comes from the fact that it is able to model all
syntactic units, including SUs, in the same way. The pipeline
model has to treat SUs as being logically prior to and distinct

from all sub-SU units, which leads to the error propagation
described above. By modeling SUs and other syntactic con-
stituents similarly, the end-to-end model is able to propose the
sub-SU nodes that lead to the best parses overall, without being
bound to a certain SU segmentation.

6. Conclusion
Previous work has shown that prosody improves parse quality.
In this work, we show that prosody improves parse and SU seg-
mentation quality simultaneously. We show that parse and SU
segmentation score are not necessarily correlated: A pipeline
model does SU segmentation better, but an end-to-end model
produces better parses. We propose that this is because the end-
to-end parser models SU boundaries the same way as other syn-
tactic boundaries. By treating SUs as just another kind of syn-
tactic unit, our model is able to take advantage of prosody to
produce better parses overall.
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