
Question-Context Alignment and Answer-Context Dependencies for
Effective Answer Sentence Selection

Minh Van Nguyen1∗, Kishan KC2, Toan Nguyen2, Thien Nguyen1, Ankit Chadha2, and Thuy Vu2∗∗

1Department of Computer Science, University of Oregon, OR, USA
2Amazon Alexa AI, CA, USA
{minhnv,thien}@cs.uoregon.edu

{ckshan,amztoan,ankitrc,thuyvu}@amazon.com

Abstract
Answer sentence selection (AS2) in open-domain question an-
swering finds answer for a question by ranking candidate sen-
tences extracted from web documents. Recent work exploits
answer context, i.e., sentences around a candidate, by incorpo-
rating them as additional input string to the Transformer mod-
els to improve the correctness scoring. In this paper, we pro-
pose to improve the candidate scoring by explicitly incorpo-
rating the dependencies between question-context and answer-
context into the final representation of a candidate. Specifically,
we use Optimal Transport to compute the question-based de-
pendencies among sentences in the passage where the answer is
extracted from. We then represent these dependencies as edges
in a graph and use Graph Convolutional Network to derive the
representation of a candidate, a node in the graph. Our pro-
posed model achieves significant improvements on popular AS2
benchmarks, i.e., WikiQA and WDRASS, obtaining new state-
of-the-art on all benchmarks.
Index Terms: question answering, human-computer interac-
tion, large language model

1. Introduction
Voice-based virtual assistants powered by open-domain ques-
tion answering (ODQA) [1, 2] have gained significant com-
mercial market in recent years, e.g., Google Assistant, Siri,
or Alexa, thanks to the progress in question answering using
large pre-trained language models (LLMs) such as BERT [3],
RoBERTa [4], and GPT-3 [5]. Recent works address the task
via generative models [6, 7]. However, a well-known issue that
has been shown to occur with the generative models is hallu-
cination [8, 9, 10], where the models generate statements that
are plausible looking but factually incorrect. Additionally, if
the answers are composed by a pretrained LLM without exter-
nal knowledge, the information contained in the answers might
be outdated and no longer valid, e.g., the answer for the ques-
tion “Which country is the reigning World Cup champion?”
will change through time. To avoid such problems, this work
follows a typical ODQA pipeline involving two main stages:
web retrieval and answer sentence selection (AS2); the latter
selects the most relevant answer sentence from the retrieved
documents to return to the user. This stage is typically imple-
mented as a point-wise model that scores each sentence individ-
ually either without any additional information [2, 11], jointly
with other top candidates [12], or with other contextual infor-
mation [13, 14]. We focus on the latter in this paper.

* This work was completed while the author was an intern at Ama-
zon Alexa AI.

** Corresponding Author. Email: thuyvu@amazon.com

q: What award did Lionel Messi win after the World Cup?

a: Lionel Messi has been crowned The Best FIFA Men’s
Player for the second time.

pa: [prev] The Best FIFA Football Awards annually honour
the most outstanding members of the world’s most popu-
lar sport. [cand] Lionel Messi has been crowned The
Best FIFA Men’s Player for the second time. [next]
The award, which is voted for by national team coaches
and captains, journalists and also fans, recognises a year
in which the former Barcelona star crowned his glorious
career by leading Argentina to victory at the World Cup.

Table 1: The example shows contextual sentences, i.e., prev
and next in a passage p for an answer a. Their relation with
the question q is critical to select the correct answer a.

Previous work on AS2 exploits contextual information
for better performance, however, is limited to the concate-
nation approach. In particular, Lauriola et al. [13] concate-
nated contextual sentences, i.e., previous (prev) and next
sentences (next), with an answer candidate (cand) for a
given question (q) as an input sequence to a Transformer ar-
chitecture, i.e., using the structure “[CLS] q [SEP] prev
[SEP] cand [SEP] next [EOS]” instead of “[CLS]
q [SEP] cand [EOS].” Han et al. [14], similarly, uses a
concatenation approach for contextual sentences and document
titles. While both models outperform the vanilla baseline, i.e.,
using only cand, we hypothesize that the improvement results
from using a longer sequence for higher predictive power.

From a modeling viewpoint, the concatenation approach
is effective largely due to the self-attention mechanism in the
Transformer architecture [15]. In particular, the mechanism
allows weighing the relevance of each token with other to-
kens from the input, i.e., question, candidate, and contextual
sentences. The approach, however, could be sub-optimal for
AS2 for two reasons. First, the concatenation approach fails
to ignore irrelevant information in the context sentences, which
could introduce noise to the prediction of the model. Second,
the approach fails to explicitly capture the alignment between
the question and the answer/context sentences, which can be
done to better reveal the correctness for the answer candidate.
Table 1 shows an example where a correct answer can be opti-
mally selected by capturing the relevance between tokens from
the question q and sentences in a paragraph p containing an an-
swer candidate a.

We address these shortcomings in this paper. First, we pro-
pose to align the tokens of the question and the paragraph’s sen-
tences to enhance the relevance computing. Specifically, we
propose to employ Optimal Transport (OT) [16, 17] to solve
the question-context alignment problem. Given two probability
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distributions over two point sets and a cost function that mea-
sures the distance between any two points, the goal of OT is
to find a mapping that moves probability from one distribution
to another such that the total cost of transporting the probabil-
ity mass between two point sets is minimized. We consider the
question and a paragraph sentence (i.e., the answer candidate or
context sentence) as two point sets, each word being a point. To
measure the distance between two points, we employ the Eu-
clidean distance between their semantic representations, which
can be obtained from a pre-trained language model (PLM), e.g.,
RoBERTa [4]. A probability distribution is also defined over
each point set via the frequencies of the words in training data.
Intuitively, the optimal alignment between the question and the
candidate sentence maps the words that are both statistically
and semantically similar between the two sentences. In the end,
the relevant context formed by the set of the candidate words
aligned with the question is utilized to compute the representa-
tion for the paragraph sentence.

Second, we address the dependencies among sentences in
the paragraph, i.e., the answer candidate and its contextual sen-
tences, to further bolster the modeling of the answer candidate
representation. In particular, we consider the paragraph sen-
tences as nodes in a fully-connected graph and aim to learn
a dependency weight between nodes. To compute the depen-
dency weight for two sentences, we propose to employ their
semantic representations and transportation costs with respect
to the question, which are already obtained from the question-
context alignment step. A feed-forward network with a sigmoid
output function is then used to consume such information to
estimate the dependency weight. Afterwards, the dependency
weights are utilized to enhance the representations for the sen-
tences via a Graph Convolutional Network (GCN) [18]. The
output representation from the GCN for the answer candidate
sentence can be directly sent to a binary classifier to obtain its
correctness probability score. We finally exploit the mutual in-
formation (MI) between the GCN representations of the sen-
tences to further encourage information sharing between them,
i.e., by maximizing and minimizing the mutual information be-
tween the sentence pairs. To this end, we treat the GCN repre-
sentations of the sentences as continuous random variables. The
MI between the variables can then be optimized via the mutual
information neural estimation (MINE) method [19, 20], which
approximately estimates the lower bound of the MI via the bi-
nary cross entropy of a variable discriminator for optimization.

To demonstrate the effectiveness of our proposed model for
AS2, we conduct experiments on a widely-used AS2 bench-
mark, i.e., WikiQA [21], used in previous work [13] and a re-
cent large-scale dataset WDRASS [22]. Experimental results
across the datasets show that our model achieves significant
improvements compared to the previous work, obtaining new
state-of-the-art performance for AS2.

2. Related work
AS2 is an important task in ODQA and is often solved by point-
wise methods that rank answer sentences extracted from re-
trieved Web documents [23, 24, 25, 11]. Contextual informa-
tion, e.g., neighboring sentences or document title, was recently
incorporated to improve AS2 [13, 14]. Previous work, however,
exploited the additional context by string concatenating [13],
i.e., appending the input sequence. By contrast, we propose to
explicitly model the dependencies between the answer sentence
and its context. We propose to align words between the question
and the answer/context sentences via Optimal Transport (OT),
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Figure 1: Illustration for our proposed model.

a popular alignment method used in machine translation [26],
event argument extraction [27], and event coreference resolu-
tion [28]. Our work is the first to apply OT to perform the
question-context alignment for AS2.

3. Architecture
Given a question q and a set of N answer sentence candi-
dates C = {c1, c2, . . . , cN}, the task of AS2 seeks to find
correct answers A ⊂ C via learning a reranking function
r : Q×ϕ(C) → ϕ(C), where Q is the question set and ϕ(C) is
the set of all permutations of C, such that the answer sentences
A are on top of the ranking produced by r. The reranker r is of-
ten implemented as a pointwise network f(q, ci), e.g., TANDA
[11], which learns a correctness score pi ∈ (0, 1) for each an-
swer candidate ci for ranking. Our work focuses on contextual
AS2 [13], where additional context such as surrounding sen-
tences is considered to better determine the correctness score
for an answer candidate.

Our proposed model, called “CASSIE”, for contextual AS2
has four main components: i) Encoding, ii) Question-Context
Alignment with OT, iii) Answer-Context Dependencies, and iv)
Mutual Information Optimization.

3.1. Encoding

We are given a question q = [wq
1, w

q
2, . . . , w

q
Tq
] with Tq words

and a set of N answer candidates C = {c1, c2, . . . , cN} (re-
trieved by a search engine), where each candidate is a sentence
ci = [wc

1, w
c
2, . . . , w

c
Tc
] with Tc words. Following the previ-

ous work [13], we consider previous and next sentences sprev ,
snext as additional context for each answer candidate c ∈ C
1. The input for our model is then formed by concatenating
the question, the answer candidate, and the context sentences to
obtain a single input sequence: [q; c; sprev; snext]. The result-
ing sequence is fed into a pre-trained language model (PLM),

1We employ padding sentences if any context sentence is missing.
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e.g., RoBERTa [4], to obtain contextualized embeddings for
the words. In addition, we employ different segment embed-
dings for the words in the question, the answer candidate, and
the context sentences. These segment embeddings, which are
randomly initialized and learnable during training, are added to
initial embeddings for the words in the first layer of the PLM.
For convenience, let [wq

1,wq
2, . . . ,wq

Tq
] and [wc

1,wc
2, . . . ,wc

Tc
]

be the sequences of word representations obtained from the last
layer of the PLM for the question q and the answer candidate
c ∈ C respectively.

3.2. Question-Context Alignment with OT

Optimal Transport (OT) [16, 17] is an established method to
move probability from one distribution to another by finding an
alignment between two point sets. In a discrete setting, we are
given two probability distributions pX and pY over two point
sets X = {xi}ni=1 and Y = {yj}mj=1 respectively (

∑
i pxi =

1 and
∑

j pyj = 1). A function D(x, y) : X × Y → R+

is also provided to measure the distance between two points x
and y. OT aims to find a mapping that moves probability mass
from the points {xi}ni=1 to the points {yj}mj=1 such that the to-
tal cost of transporting the probability mass between the two
point sets is minimized. Formally, the goal of OT is to find the
transportation matrix πXY ∈ R+n×m that minimizes the fol-
lowing transportation cost: dXY =

∑
1≤i≤n
1≤j≤m

D(xi, yj)πXY ij

such that πXY 1m = pX and πT
XY 1n = pY . The transportation

matrix πXY represents the optimal alignment between the point
sets X and Y , where the i-th row in the matrix provides the op-
timal alignment from a point xi ∈ X to each point yj ∈ Y .

In our question-context alignment problem, we consider the
question q and a candidate/context sentence c as two point sets:
{wq

i }
Tq

i=1 and {wc
i }Tc

i=1 respectively (each word is a point)2.
To obtain the probability distributions for the sets, we pro-
pose to measure the frequencies of the words and perform a
sum normalization. In particular, the probability distribution for
the question is computed as follows: pwq

i
=

freq(w
q
i )∑Tq

i′=1
freq(w

q

i′ )
,

where freq(wq
i ) is the number of questions that the word wq

i

appears in training data. Next, to estimate the distance be-
tween two words (points) wq

i ∈ q and wc
j ∈ c, we measure

their semantic divergence by computing the Euclidean distance
of their contextualized representations obtained from the PLM:
D(wq

i , w
c
j) = ||wq

i − wc
j ||. The optimal transportation matrix

πXY , i.e., πqc for the question q and the sentence c can then be
solved efficiently using the Sinkhorn-Knopp algorithm [29, 17].
Finally, we obtain the relevant context rc for the sentence c as:
rc =

⋃Tq

i=1{wc
j |j = argmax1≤j′≤Tc

πqcij′}. In the end, we
compute the representation for the sentence c as the average
sum over the word representations for the relevant context:

rc =
1

|rc|
∑

j|wc
j∈rc

wc
j (1)

3.3. Answer-Context Dependencies

For convenience, let [r1, r2, r3] be the representations obtained
from Equation (1) for the answer candidate s1 ≡ c, the previ-
ous sentence s2 ≡ sprev , and the next sentence s3 ≡ snext. To
learn the dependencies among the sentences, we consider each
sentence as a node in a fully-connected graph G = (V,E),

2We exclude stopwords and punctuations from the two point sets
before performing the alignment.

where V = {si} (1 ≤ i ≤ 3) is the node set and E =
{(si, sj)} (1 ≤ i, j ≤ 3) is the edge set. Our goal is to learn a
weight αij ∈ (0, 1) for each edge (si, sj) to represent the de-
pendence of si on sj . To this end, we propose to employ their
semantic representations ri, rj , and transportation costs to the
question dqsi , dqsj to measure the dependency weight αij be-
tween the sentences si and sj . Particularly, we first compute
the score: uij = FFNDEP ([ri ⊙ rj ; dqsi ; dqsj ]), where ⊙ is
the element-wise product, [; ] represents the concatenation op-
eration, and FFNDEP is a feed-forward network. Afterwards,
the weight αij for the edge (si, sj) is obtained via a softmax
function: αij =

exp(uij)∑K
j′=1

exp(uij′ )
The induced weights {αij} are

then used to enhance the representations for the sentences via L
layers of a Graph Convolutional Network (GCN) [18]:

hl
i = ReLU(

K∑

j=1

αijWlhl−1
j + bl) (2)

where Wl, bl are learnable weight matrix and bias for the layer
l of the GCN (1 ≤ l ≤ L), and h0

i ≡ ri is the input represen-
tation for the sentence si. The output vectors hL

i ≡ hi at the
last layer of the GCN serve as the final representations for the
sentences si. The representation h1 for the answer candidate
s1 ≡ c is finally sent to a feed-forward network with a sigmoid
output function to estimate the correctness score pc ∈ (0, 1) for
the answer candidate c: pc = FFNAS2(h1). For training, we
minimize the binary cross-entropy loss LAS2 with the correct-
ness scores pc.

3.4. Mutual Information Optimization

In information theory, MI is defined as the KL divergence be-
tween the joint distribution and the product of the marginal dis-
tributions of two random variables. As a result, two random
variables would be more dependent if they have large mutual
information. In our case, some of the context sentences might
also be correct/incorrect answers for the question. Therefore,
we expect answer sentence pairs to share more semantic infor-
mation and (answer, non-answer) sentence pairs to share less
semantic information relevant to the question. This can be done
by considering sentence representation vectors hi as random
variables and maximizing/minimizing the mutual information
between the variables, respectively. However, the sentence vec-
tors hi are very high dimensional variables, making the exact
calculation of the MI between the vectors impossibly expen-
sive. To overcome this, we followed the mutual information
neural estimation (MINE) method [19, 20] to estimate and op-
timize the lower bound of the MI between the variables via the
binary cross entropy of a variable discriminator U , which is a
feed-forward network with a sigmoid output function:

LMI = −
∑

(i,j)∈I+

log(U([hi; hj ])

−
∑

(i′,j′)∈I−

log(1− U([hi′ ; hj′ ]) (3)

where I+ = {(i, j)|si, sj ∈ A}(1 ≤ i, j ≤ 3) is the index set
for answer sentence pairs, and I− = {(i′, j′)|si′ ∈ A, sj′ /∈
A}(1 ≤ i′, j′ ≤ 3) is the index set for (answer, non-answer)
sentence pairs among the three sentences.
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3.5. Training and Inference

All the components in our proposed model are jointly trained
via minimizing the loss function:

L = LAS2 + γLMI (4)

where γ is a hyper-parameter to balance the contributions of
each component to the training of the model. Following the
previous work [11, 13], we consider all answer candidates for
each question for training and inference.

Datasets Train Dev Test #A/Q
WikiQA 2,118 126 243 1.18
WDRASS 53,419 5,416 5,395 4.96

Table 2: The number of questions in training, development, and
test data of the two datasets. The last column presents the aver-
age number of answers to a question.

4. Results
4.1. Experimental Setup

Datasets Following the previous works [11, 13], we use the
same train/dev/test splits for the standard AS2 dataset, i.e., Wik-
iQA [21]. In addition, we also experimented with a large-scale
AS2 dataset called WDRASS [30] to investigate the models’ per-
formance further.
• WikiQA is a QA dataset created by [21]. The dataset con-

tains questions and answer candidates, manually annotated
on Bing query logs over Wikipedia. Following the previous
works, we conduct experiments with the clean version of the
dataset, and combine the development and test sets to obtain
a larger and more reliable set for model comparison.

• WDRASS is recently created by [30]. WDRASS is a large-
scale dataset focusing on non-factoid questions requiring en-
tire sentences to answer.

Statistics for all the datasets are shown in Table 2.
Hyper-parameters and Tools Following the previous work
[13], we use a small portion of the WikiQA training data to
tune hyper-parameters for our model and select the best hyper-
parameters for all the datasets. We employ Adam optimizer to
train the model with a learning rate of 1e − 5 and a batch size
of 64. We set 400 for the hidden vector sizes for all the feed-
forward networks, L = 2 for the number of the GCN layers, and
0.3 for the trade-off weights γ. To implement the models, we
use Pytorch version 1.7.1 and Huggingface Transformers ver-
sion 3.5.1.We use the NLTK library version 3.5 [31] to prepro-
cess the data and remove stopwords. The model performance is
obtained over three runs with different random seeds.
Evaluation Metrics Following the previous works, we measure
the model performance using the entire set of answer candidate
sentences for each question, using the three metrics: Precision-
at-1 (P@1), Mean Average Precision (MAP), and Mean Recip-
rocal Rank (MRR) scores.

4.2. Performance Comparison

We compare our proposed model with TANDA [11] and LOCT
[13], which are the current state-of-the-art models for AS2. Ta-
ble 3 shows the perforformance comparison between the mod-
els on two settings: i) using a non-finetuned RoBERTa base
encoder, and ii) using a finetuned RoBERTa base encoder. The

Models
Non-finetuned
RoBERTa Base

ASNQ-finetuned
RoBERTa Base

P@1 MAP P@1 MAP
TANDA 63.24* 75.00* 78.67* 86.74*
LOCT 68.09* 79.00* 81.31* 88.00*
CASSIE 74.16 83.29 83.77 89.28

Table 3: Performance comparison of the models on combina-
tion of developement and test sets of WikiQA. * indicates the
performance officially reported by the previous work [13].

Models
ASNQ-finetuned
RoBERTa Base

P@1 MAP MRR
TANDA 54.6 63.5 64.3
CASSIE 55.9 61.8 69.7
CASSIE (joint) 55.9 64.2 65.0

Table 4: Performance comparison on WDRASS test set.

non-finetuned RoBERTa Base is obtained from [4] while the
other is produced by finetuning TANDA on the ASNQ dataset
[11]. As can be seen from the table, all the models benefit from
using the finetuned RoBERTa Base encoder. Across the two
settings, our model outperforms the previous models by large
margins, demonstrating its effectiveness for AS2.

Table 4 shows the performance of our proposed model com-
pared to TANDA on the WDRASS test set. CASSIE signifi-
cantly improves the performance for P@1 and MRR, however,
decreases the performance for MAP. We attribute this to the fact
that our model ranks the answer candidates individually. To deal
with this, we explore another use case of our model where it can
produce a joint reranking for multiple answer candidates ranked
by TANDA, leading to significantly better performance for all
the three metrics.

5. Conclusions and Future Work
In this work, we propose CASSIE, a novel LLM-based model
that (i) efficiently learns the answer-context dependencies to im-
prove representation learning for AS2 by (ii) leveraging rele-
vant context in answer/context sentences captured via question-
context alignments using Optimal Transport. Experimental re-
sults demonstrate the efficacy of our proposed model, result-
ing in significant improvements and new state-of-the-art per-
formance across several widely-used AS2 benchmark WikiQA
[21] and a recent large-scale AS2 dataset (WDRASS) [30].

Naturally, our proposed model CASSIE can approximate
human judgement for the correctness of an answer for a given
question. As a result, the model can be used to provide sig-
nals for assessing quality of answers produced by open-domain
question answering (ODQA) systems. As such, we are explor-
ing AS2 datasets and architecture designs for building better re-
ward models for reinforcement learning from human feedback
[7], which has shown impressive improvements for ODQA via
training LLMs to generate answers for open-domain questions.
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