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Abstract

The use of self-supervised pre-trained speech models has
greatly improved speech tasks in low-resource settings. How-
ever, fine-tuning the entire model can be computationally ex-
pensive and not scalable for multiple tasks (e.g., personalized
ASR). While recent approaches have tried to solve this issue by
training adapters, they fail to match the performance of full fine-
tuning models, possibly due to the challenge of task domain
transferability. Our proposed method enhances the performance
of vanilla adapter tuning for ASR by using a simple yet effec-
tive token-dependent bias. This approach adds a token-specific
representation shift (bias) to the intermediate representations of
a pre-trained model, which better maps the latent features of
the frozen network to the task domain. Our approach yields
better recognition results with the adapter tuning strategy and
achieves the performance of a full fine-tuning model on clean
LibriSpeech while maintaining its lightweight nature.

Index Terms: Automatic Speech Recognition, Self-Supervised
Pre-training, Adapter-tuning, Transfer Learning

1. Introduction

In recent years, there has been a surge of interest in using self-
supervised pre-training speech models to overcome the chal-
lenges posed by low-resource datasets. These models [1, 2, 3]
have proven to be highly effective in capturing and expressing
the inherent structure of natural speech in the context of ma-
chine learning. In practice, the model learns to construct the
representations of speech data from large amounts of unlabeled
utterances that benefit diverse downstream speech tasks, such
as speech recognition [4, 5, 6, 7, 8] and speaker identification
[9, 10]. Thus, they have emerged as the method of choice for
researchers and practitioners working in low-resource settings
to avoid problems like poor generalization and improve speech
task performance.

However, the objective function [2, 11] for pre-training the
self-supervised model is typically task-agnostic, which results
in feature representations that are more general and less task-
targeted. This suggests that the model needs to undergo su-
pervised fine-tuning to achieve the best performance for any
downstream task. Despite success in overcoming the challenge
of collecting costly annotated datasets, fine-tuning the whole
model can be computationally expensive and does not scale well
to multiple tasks. In the instance of personalized Automatic
Speech Recognition (ASR), a complete set of fine-tuned param-
eters must be learned and stored in the server for every unique
user. Each personalized network often carries a massive size
of 100M parameters with reference to the currently available
state-of-the-art (SOTA) model choices. Then, to tackle these is-
sues, a more parameter-efficient training strategy is proposed to

employ the adapter module [12] in the transformer architecture.

Adapters [13] are lightweight trainable neural blocks that
can be inserted within the layers of a pre-trained network while
keeping the rest of its original network parameters frozen.
These would usually amount to a small fraction of the entire
network size, where the optimization process relies on them to
tune the frozen network towards the downstream task. Adapters
have been employed in several Natural Language Processing
(NLP) applications [14, 15, 16] to study the parameter-efficient
aspect and demonstrated to achieve comparable performance to
the fully fine-tuned model. Furthermore, [17] has investigated
the effectiveness of adapters and found that they work well for
low-resource fine-tuning and cross-domain tasks since they gen-
erate representations that deviate less from those of the initial
Pre-trained Language Model (PLM). Likewise, recent works in
ASR [18, 19, 20] have also successfully trained the recogni-
tion system with the lightweight adapters. However, adopting
adapter tuning in ASR still fails to match the performance of a
full fine-tuning model with degradation in its recognition error
rate [19]. This could be due to the low deviation from the pre-
training features [17] produced by the model, which affects the
domain transferability needed for mapping speech input to text.

In this paper, we aim to enhance the performance of an
ASR model trained with adapters as we work towards closing
the gap between full model fine-tuning and parameter-efficient
adapter tuning. To improve the task domain transferability of
vanilla adapter tuning, we propose adding token-specific task-
representation shift (i.e., bias) to the intermediate representa-
tions of a pre-trained model. The added bias better maps the
latent representations of the frozen network to our downstream
task with the relevant task-domain shift [21, 22], resulting in
improved task-specific domain transferability for speech-to-text
recognition. Besides, similar approaches, such as those dis-
cussed in [23, 24], have shown that fine-tuning only the bias
in the transfer learning setting is effective for NLP and com-
puter vision tasks. Likewise, our work further supports this
by empirically demonstrating the effectiveness of the bias pa-
rameters, which yield a better ASR system than the vanilla
adapter model. Our experimental results show that our proposed
adapter tuning with token-dependent representation shift out-
performs the full fine-tuning model on dev-clean and test-clean
of the LibriSpeech dataset while only using trainable parame-
ters amounting to only 15% of the original model. The proposed
token-dependent bias only introduces around 0.095% trainable
weights, maintaining the lightweight nature of adapter tuning.
We also conducted detailed ablation studies, which prove the
importance of the proposed bias terms in achieving contextual
shifts in the representations and improving the transferability
of adapter tuning. To the best of our knowledge, this is the first
work to investigate the efficacy of introducing trainable bias into
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Figure 1: An illustration of the model architectures for both vanilla and the proposed token-dependent bias adapter tuning. The
orange and blue colors indicate the trainable parameters, while the gray blocks represent the frozen parameters during training. Left:
the structure of the adapter module, which includes layer normalization, feed-forward down-projection, a non-linearity, and an up-
projection, with a residual connection. Center: the vanilla adapter tuning [19] architecture, where adapter modules are inserted after
the self-attention layer and the output of the feed-forward layer. Right: our proposed Token-dependent Bias Adapter-tuning (TBA)
architecture, which includes token-dependent bias added after the multi-head attention and in the midst of the feed-forward layer.

adapter tuning for ASR.

2. Methodology
2.1. Adapter-tuning

The structure of an adapter module usually consists of two lay-
ers which are a feed-forward down-projection layer and an up-
projection layer [13]. The feed-forward layer takes the output
of the pre-trained speech model as input and performs a non-
linear transformation (i.e., using a GELU activation [25]) to
obtain the intermediate representations. The projection layer
then maps them to the task-specific output dimension. In addi-
tion, we followed [26] to add a layer normalization before the
down-projection for smoother gradient and implement a resid-
ual connection between the input and the output of the mod-
ule. A graphical illustration is provided in Figure 1. Generally,
adapters can be added in different positions between any sub-
layers of the transformer block. However, [19] reported that
deploying the adapters after the self-attention block and dense
layers results in a better performance in ASR. Hence, we use the
same architectural design as the baseline for our work. More-
over, we report that the dense projection layers need not be ini-
tialized as a near identity function [13] as we show in our exper-
iments that we have successfully trained our adapter modules
with BERT-base [27] weights initialization (i.e., normal distri-
bution).

2.2. Token-dependent Bias Adapter-tuning (TBA)

Token-dependent bias adapter-tuning introduces a learnable
representation bias to the intermediate representations, i.e., a
trained vector embedding weighted conditionally to each token
in the input sequence. The central goal of this term is to add
token-specific shifts to the output representations of the frozen
pre-trained sub-layer so that they adapt better to the downstream
task. As in the previous works, [22, 24] have shown in their ex-
periments the significance and the role of using the bias terms to
achieve competitive performance to the full model fine-tuning
for NLP tasks. Such bias helps to shift the latent representa-
tions to the task domain, making it more task-specific. More
importantly, it requires very few additional parameters and com-
putational complexity to implement in practice. Likewise, we
propose to apply this to our adapter tuning strategy with some
modifications towards the ASR task.
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Figure 2: A graphical representation of the proposed token-
dependent bias layer. It consists of a linear dense prediction
layer to compute the weights of the bias to be added for each
token. Here, bias b is a trainable vector, c is the weight derived
Jfrom each token t.

Concretely, we present the token-dependent bias layer ar-
chitecture in Figure 2. The token-dependent bias layer consists
of a trainable bias vector b and a linear layer f,. The linear
layer f. takes in the latent features from the previous sub-layer
to generate token-dependent weights «;, for each frame token
i € [1,..., N] of a N-length sequence. This weighs the added
bias term, b, according to the importance of the representation
shift of each frame token to enhance the contextual information
of speech representation and helps ASR adapt towards contex-
tual domains. Then, the weighted bias is added to the current
latent features and we define the process as

r=2+b® folz) M

where
fa(l') = XW,X = [051,052, e

x € R™€ is the latent features, W, € R°*! is the parameters
of the linear layer and « is the resultant weighing coefficient.
We note that vector bias b has the same channel dimension as z.

In our proposed method, we apply the token-dependent bias
twice in each transformer block over the vanilla adapter tuning
structure. Specifically, we inserted one after the multi-head at-
tention (dim = 768) and another one after the first feed-forward
layer (dim = 3072). We illustrate the proposed TBA architec-
ture in Figure 1.
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Figure 3: A comparison of the performance with the vanilla and the proposed token-dependent bias adapter tuning against the full model
fine-tuning trained on 100h LibriSpeech. The line plots show the word error rate ({) of each architecture over different down-projection
rates (n = 2,3,4,5) on the LibriSpeech development and testing dataset, without LM. TBA outperforms the baseline adapter on all
test sets while outperforming full model fine-tuning on dev-clean and test-clean when the down-projection rate n = 2.

3. Experiments

We use HuBERT [2] as our self-supervised pre-training model
backbone. The model is pre-trained with the full 960 hours Lib-
riSpeech [28] dataset. During pre-training, the model learns
from masked predictive coding [11] that predicts the HuBERT
codes from the masked features. These codes are generated
based on the K-Means (K = 500) algorithm from the inter-
mediate latent representations of the sixth layer of HuBERT’s
transformer at the second iteration. The pre-trained model can
be downloaded from the GitHub link'.

3.1. Dataset

The fine-tuning process in our experiments trains on the official
100 hours LibriSpeech set. In addition, we also train on a subset
of ten hours to analyze the performance for a smaller training
set. The results are reported on the official dev-clean, dev-other,
test-clean, and test-other of LibriSpeech.

3.2. Experimental Setup

We compare our method with the vanilla adapter tuning (base-
line) in this work. During fine-tuning, we use the pre-trained
checkpoint from FairSeq and follow the standard base configu-
ration setup® for 100 hours and ten hours of training data. Here,
only the layers as shown in Figure 1 are trained, and the rest of
the parameters are kept frozen for adapter tuning. Formally, the
optimization process can be described as
min Loy (y, 3 6, 0) @)
where y, ¢ refer to the target text and prediction, respectively.
0’ represents the trainable parameters and 6 denotes the param-
eters from the original pre-trained model. The learning rate
is grid-searched in the range [2e-5, 1e-4], with le-4 being the
best on dev-clean set for all adapter tuning methods. Moreover,
since changing the down-projection rate affects the quality of
the information passed, we investigate the performance of dif-
ferent down-projection rates (n) for the feed-forward layer in
the adapter. This corresponds to the channel dimension size of
384, 256, 192, 153, for n = 2, 3, 4, 5. Models are trained to
convergence, and we take the best checkpoint based on the val-
idation word error rate (WER) to conduct the final evaluations.
Note that our work do not use any RNNs decoder [29] during

"https://github.com/facebookresearch/fairseq/
tree-main/examples/hubert
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model fine-tuning and the results are based only on the encoder
with CTC optimization.

3.3. Experimental Results

We report the result of all our experiments without using a
language model (LM). In Figure 3, we obtain a line plot of
the performance between the baseline and our proposed token-
dependent bias adapter with increased down-projection rates.
The y-axis measures the WER of the official testing set (dev and
test) in LibriSpeech. The gray dotted line denotes the perfor-
mance of the full model tuning. We observe a trend that clearly
indicates model degradation with increasing down-projection
rates. This is likely caused by the information loss, with the in-
creased reduction in the dimensionality of the down-projection
layer. Nevertheless, we show that adding the bias to the vanilla
adapter tuning helps improve the general performance of the
speech recognition systems with lower WERs. Besides, our
model with a down-projection rate of 2 and 14.37M trainable
parameters has achieved better performance than the full model
tuning for the clean dataset. However, it appears that both the
vanilla and our adapter tuning methods did not perform well on
dev-other and test-other sets, which may have been affected by
the noise disturbance in the other LibriSpeech dataset.

To investigate the impact of a smaller dataset, we present
experimental results comparing the performance of an ASR
model trained on 100 hours and 10 hours of LibriSpeech, as
shown in Table 1. We present the results of our experiments
using a down-sampling rate of 3, which achieves comparable
recognition performance to the fully fine-tuned model while us-
ing fewer parameters. Specifically, the performance difference
is less than 3% while using only 67% of the parameters com-
pared to the down-sampling rate of 2. We observe that the
model’s degradation from the smaller training dataset of ten
hours appears to be more significant than that from the 100h
dataset, as seen when compared to the full fine-tuned model.
The deterioration could be as high as 8.25% in the fest-other
set for the vanilla adapter tuning. Nevertheless, our proposed
model with token-dependent bias has been demonstrated to mit-
igate the deterioration and achieve lower WERs, reducing the
performance gap between adapter tuning and full model tuning
with the added bias terms. Lastly, we found that applying a
similar token-dependent biasing-only technique as AdapterBias
[22], which was successful in NLP, did not yield good results in
ASR, highlighting the distinctions between NLP and ASR.



Table 1: Experimental results on the official LibriSpeech development and testing set without LM. The Word Error Rates (WERs) for
the vanilla adapter (baseline) and the proposed token-dependent bias adapter are based on the down-projection rate of n = 3. The
comparison of the proposed method with the popular adapter method and the full fine-tuning model is presented here.

Param Size

Method
M)

WER (%) of LibriSpeech ({.)

Dev-Clean ‘ Dev-Other ‘ Test-Clean ‘ Test-Other

Fine-tuning: 100-hours of LibriSpeech

HuBERT (Full Fine-tuning) 94.5 5.83 13.08 5.85 12.91
AdapterBias [22] 0.09 26.05 33.65 26.27 34.19
Adapter (Baseline) 9.56 6.27 14.08 6.26 13.92
Token-dependent Bias Adapter (Ours) 9.65 5.95 13.66 5.97 13.40
Fine-tuning: 10-hours of LibriSpeech
HuBERT (Full Fine-tuning) 94.5 10.40 18.65 10.64 18.92
AdapterBias [22] 0.09 36.33 42.99 36.70 43.35
Adapter (Baseline) 9.56 11.12 19.96 11.46 20.48
Token-dependent Bias Adapter (Ours) 9.65 10.79 19.59 10.89 19.82

3.4. Ablation Study

In this section, we ask two questions to investigate the effec-
tiveness of the proposed bias terms. We report the subsequent
experiments of adapters with a down-projection rate of 3 and
training on 100 hours of LibriSpeech.

Q1. How would the token-dependent bias-only model per-
form?

To assess the effectiveness of the bias terms in learning the
ASR task, we train our network solely with the bias and layer
normalization in every transformer block, while removing the
adapter modules. We also compare the results with those ob-
tained by freezing the entire HuBERT and training only on the
prediction head, as shown in Table 2. We observed that using
only the bias did not yield good performance. However, it is im-
portant to note that this setup introduced only 156K parameters
compared to 9.65M. Despite the degradation in performance,
the bias-only model still achieved three times better results than
a frozen HuBERT, suggesting that the bias was able to learn
a useful contextual representation shift for better recognition.
Nevertheless, we believe that the representation shift alone is
not enough to master the ASR task from the frozen network
since the task involves mapping from waveform to text, which
requires a more complex non-linearity projection for effective
learning.

Table 2: Comparison of the performance (WER%) between in-
cluding and removing the adapter module with LibriSpeech.

Dev ({) Test ({)
Method Clean Other | Clean Other
Token-dependent Bias
Adapter (Proposed) 5.95 13.66 597 13.44
Token-dependent Bias
(without Adapter Module) 21.30 28.77 2114 1 2890
Frozen HuBERT 62.55 | 71.14 | 63.07 | 70.87

Q2. How would the performance be affected by removing
the bias in the proposed trained network?

To evaluate the impact of the bias terms in the proposed net-
work, we ablate the token-dependent bias layers in the model
and conduct validation testing on the LibriSpeech test set, as
shown in Table 3 that presents the breakdowns of the insertion,
deletion, and substitution error of the ASR prediction. We re-
fer to the bias after the multi-headed attention as A#tn bias and
the bias between the feed-forward layers as FFN bias. Exam-
ining the table, we can observe that removing the bias terms
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did not significantly affect insertion and deletion errors. How-
ever, it had a considerable impact on substitution errors. This
might indicate that the bias terms did play a crucial role in pro-
viding the contextual shift [22] such that the representations are
more content-specific, improving the model’s ability to recog-
nize the spoken words correctly. Also, the FFN bias is more
impactful compared to the Attn bias. The reason for this could
be the larger dimensionality of the bias, which allows for more
fine-grained representations. Specifically, the FFN bias has a
dimension of 3072, while the Attn bias is only 768.

Table 3: Comparison of the performance based on the proposed
TBA network with removing the token-dependent bias over the
specified layer.

Method Error Rate on Testing Sf?tS (%) (4)
Insert [ Delete [ Substitute [ WER
LibriSpeech (Test-Clean)
TBA (Proposed) 0.38 0.45 5.14 5.97
(-) Attn Bias 0.35 0.54 5.22 6.11
(-) FFN Bias 0.45 0.42 6.20 7.07
(-) All Bias 0.43 0.48 6.31 7.22
LibriSpeech (Test-Other)
TBA (Proposed) 0.84 1.21 11.35 13.40
(-) Attn Bias 0.73 1.39 11.48 13.60
(-) FFN Bias 0.93 1.07 12.89 14.89
(-) All Bias 0.84 1.24 13.04 15.12

4. Conclusion

Our paper introduces a new approach to ASR called token-
dependent bias adapter tuning, which can be easily utilized on a
self-supervised pre-training backbone. The proposed TBA out-
performs the vanilla adapter baseline and even outperforms the
full model fine-tuning at the down-projection rate of 2 on Lib-
riSpeech clean sets, while maintaining its lightweight nature.
‘We also conducted ablation studies, which demonstrate the im-
portance of the bias terms in improving content representations
by providing the contextual shift. In the future, the proposed
TBA can be extended to multi-task scenarios.
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