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Abstract
Spoken Keyword Spotting (KWS) in noisy far-field environ-
ments is challenging for small-footprint models, given the re-
strictions on computational resources (e.g., model size, running
memory). This is even more intricate when handling noises
from multiple microphones. To address this, we present a new
multi-channel model that uses a CNN-based network with a lin-
ear mixing unit to achieve local-global dependency representa-
tions. Our method enhances noise-robustness while ensuring
more efficient computation. Besides, we propose an end-to-
end centroid-based awareness module that provides class sim-
ilarity awareness at the bottleneck level to correct ambiguous
cases during prediction. We conducted experiments using real
noisy far-field data from the MISP challenge 2021 and achieved
SOTA results compared to existing small-footprint KWS mod-
els. Our best score of 0.126 is highly competitive against
larger models like 3D-ResNet, which is 0.122, but ours is much
smaller at 473K compared to 13M.
Index Terms: Small Footprint, Keyword Spotting, Multi-
channel, Noisy Far-field, Centroid Awareness

1. Introduction
Voice assistant applications in smart devices experiencing in-
creasing adoption due to the recent success of automatic speech
recognition. Keywords such as “Alexa” or “Hey Siri” are fre-
quently utilized to activate hands-free applications. The task
of identifying these predefined words within a continuous ut-
terance is referred to as keyword spotting (KWS). It is crucial
to develop KWS systems with small footprint models and low
inference latency, as they are commonly deployed on-device.

Recent works on small footprint KWS [1, 2, 3, 4, 3, 5,
6, 7, 8] have demonstrated promising outcomes when dealing
with clean and close-talking audio datasets. However, the per-
formance of these models significantly deteriorates when ap-
plied to far-field utterances. This decline is particularly evident
in multi-talker environments with low signal-to-noise ratios
(SNRs). While conventional techniques like multi-conditioning
[9] and front-end speech enhancement [10, 11] are employed
to address this issue, models utilizing multi-conditioning often
struggle with a wide range of noise levels [12], resulting in poor
performance. Furthermore, in far-field speech processing, fac-
tors such as reverberation and multiple sources of interference
blur spectral cues, compromising the quality of single-channel
speech enhancement.

Recent work on small footprint Keyword Spotting (KWS),
ConvMixer [13], addresses the challenge of applying KWS in
noisy far-field environments. In order to enhance the perfor-
mance of small KWS systems, the authors propose a novel
encoder architecture based on convolutional neural networks

(CNN). This architecture incorporates a mixer module as an al-
ternative to attention mechanisms. The mixer unit computes
weighted feature interactions across different channels, allow-
ing for the efficient flow of information with varying degrees of
importance. While the previous work has shown promising per-
formance in small footprint Keyword Spotting (KWS) for noisy
far-field conditions, it is specifically tailored to single-channel
speech data. In contrast, multi-channel speech data comprises
recordings captured from multiple microphones placed in dif-
ferent locations, introducing various noise sources and acoustic
environments. The variability among channels can lead to inter-
channel discrepancies in the audio signals, which can have a
negative impact on the performance of single-channel keyword
spotting models

Multi-channel systems have been extensively studied to im-
prove the noise robustness of speech recognition [14, 15]. Re-
cent advances [16, 17] utilizing architectures resembling beam-
forming or masking networks have achieved success in jointly
optimizing multi-channel enhancement and acoustic modeling.
However, small footprint models often encounter challenges
in effectively learning spatial filtering and noise-robust feature
extraction from audio data. To tackle this problem, [18] in-
troduced a low latency model architecture that incorporates a
three-dimensional single value decomposition filter layer. This
innovation enables the model to process raw microphone ar-
rays for on-device multi-channel Keyword Spotting (KWS).
Nonetheless, this approach comes with increased computational
costs. Despite the potential benefits, research on small foot-
print multi-channel KWS systems remains relatively limited,
with only a limited amount of literature available on the sub-
ject.

In this paper, we build on [13] to address the limitations
of small footprint models. Specifically, we modify the single-
channel framework to design a multi-channel KWS that is more
robust in noisy and far-field environments, while still maintain-
ing a small footprint for on-device applications. Our model
architecture builds on the success of the convolutional-based
networks in modeling local dependencies on clean utterances.
However, the performance degenerates when the sample is
noisy and reverberated. The proposed networks enhance the
existing architecture by using a convolution-mixer module that
computes the global dependency with a linear unit implemented
after the CNN block across temporal, frequency and audio chan-
nels. The linear unit captures the global information to improve
the understanding of the noisy features. Most importantly, our
setup employs a direct and simple linear block that is highly
efficient, requiring less memory and computational power com-
pared to other methods. In addition, we suggest improving the
model’s performance by using a trainable codebook with the
gradient descent algorithm to learn the estimation of the key-
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Figure 1: Model Architecture for Multi-channel ConvMixer with Centroid Awareness (An example of a 6-channel model)

word centroids. Finally, our results show that applying multi-
look beamforming and weighted Prediction Error (WPE) to our
proposed structure achieves the new SOTA for small multi-
channel KWS. In general, our model performs competitively
with popular models like Conformers and 3D-ResNet, which
are at least 27 times larger than ours.

2. Methodology
2.1. KWS Model: Multi-channel ConvMixer

While many small-footprint KWS have succeeded with the
CNN architecture, they often fail when audio is badly distorted
by noise and reverberation. To address this issue, we propose
using a linear unit (mixer), that is attached after the convolu-
tional block to compute global information. As shown in [19],
using simply two linear operators over the channel, and the to-
ken level can effectively learn global information in image clas-
sification. Thus, we developed our mixer module to consist of
2 linear layers (i.e., a downward projection, GELU [20] and an
upward projection), and applied it to the time, frequency and
microphone channels. This allows the model to look into the
global frames in these three dimensions and prioritize relevant
attributes to embed noise-robust representations for the KWS
task. It is important to note that the objective of the mixer unit
is not to perform audio enhancement, but rather to exploit lin-
ear computation to extract global contextual dependency infor-
mation to increase the capacity of our networks. Furthermore,
our proposed mixer unit has a lower computational complex-
ity compared to a typical attention module, making the overall
architecture small and maintaining low latency.

u∗,t,∗ = x∗,t,∗ +W2 · δ[W1 · LayerNorm(x)∗,t,∗]

yf,∗,∗ = uf,∗,∗ +W4 · δ[W3 · LayerNorm(u)f,∗,∗]

z∗,∗,c = y∗,∗,c +W6 · δ[W5 · LayerNorm(y)∗,∗,c]

(1)

where x, u, y, and z refer to the intermediate features of
the layer output respectively. δ represents the GELU unit. W1

and W2 are the learnable weights of the linear layer for tem-
poral channel shared across all frequency frame f , for f ∈
{1, 2.., F}. W3 and W4 are the learnable weights of the linear
layer for frequency channel shared across all time frame t for
t ∈ {1, 2.., T}. And W5 and W6 are the learnable weights of
the linear layer for audio channel shared across c microphones,
for c ∈ {1, .., 6} in a six-channel KWS model.

Our proposed multi-channel ConvMixer model comprises
a c-parallel (non-sharing) convolutional encoder where c is de-
termined by the number of given microphones. A graphical
representation is presented in Figure 1. The model first en-
codes simple convolutional features, and we pass it to our multi-
channel ConvMixer Block (N = 4) to execute the proposed
computation. At first, time-frequency information is extracted
independently using the 2D and 1D depthwise separable con-
volution. Then, the mixer unit combines the c microphones to
learn and construct our global dependency information. Finally,
a post-convolutional encoder is used to aggregate the micro-
phones with a pointwise convolutional layer, and we obtain a
D-dimensional vector after a global max pooling. Before send-
ing for prediction, our final latent representations are appended
with the centroid awareness, as discussed in the following sub-
section.

2.2. Centroid Based Awareness

Under a noisy environmental setting, audio can be heavily dis-
torted by background noises. The latent embedding of such
an instance tends to lie near the hyper-planes of the decision
boundary and is often projected into a wrong keyword clus-
ter. To improve the latent embeddings of the utterance, we
proposed to consider an additional term that computes the L2-
norm Euclidean distance of the utterance to the mean of each
keyword. The L2-norm distance is measured at a higher di-
mensional space of 320, which is an increase from the original
dimension of 80, where we pass the latent vector of the utter-
ance to a linear projection function. The purpose of this term is
to measure the “similarity” of the noisy sample at a more fine-
grained higher dimensional space to the clustering keywords
and provide additional informative prior that helps in making
better decision.

Formally, we understand this by the optimization process of
a typical cross-entropy loss. The learning function is commonly
written as:

H(q, q̂) =
C∑

k=1

q(k) log(q̂(k))

This can be decomposed based on Bregman divergence [21] as:

E(H(q, q̂)) = DKL(q||q̄)︸ ︷︷ ︸
Bias2

+E(DKL(q̄||q̂))︸ ︷︷ ︸
Variance

(2)

297



where q is the one-hot target label, q̂(k) denotes the predic-
tion probability of the k-th class, q̄ represents the mean of log-
probability after normalization, resembling the mean probabil-
ity distribution of the classes, and DKL is the KL divergence
between the two conditioning distribution.

q̄(k) ∝ exp{E(log(q̂(k)))}, for k = 1, ..,K (of K-classes)

Here, the model error consists of the two KL divergence terms
in (2) and the predictive outcome of q̂ is given by the softmax
of the dense layer

q̂ ∝ exp(WfeatXfeat +WL2-normXL2-norm) (3)

where Xfeat is the pooled D-dimensional latent representation
of intermediate output, X . XL2-norm is the L2-norm distance
of the pooled Xfeat to the centroid mean of keyword classes.
Wfeat and WL2-norm are the learnable weights of the Xfeat and
XL2-norm. We claim that the performance improves over the
centroid-based awareness as it lowers the model error rate by
exploiting the distancing information from the extra L2-norm
term as it provides, in simple explanation, how close the in-
ferring utterance is to each of the predicting classes with the
similarity distancing.

Specifically, we expect q̂ to be more confident with the ad-
dition of the “similarity” information between the class cen-
troids and the divergence term of q̄ and q̂ to decrease. Similarly,
the average class probability map of q̄ tends to get closer to the
label from the vanilla decision boundary, and the divergence of
q and q̄ decreases. This reduces estimation bias and variance of
our model, as presented in (2), in which the model converges to
a better minimum with a lower model error rate.

Since estimating the keyword centroids with the training
data can be computationally expensive, we propose to learn
the estimation of the keyword centroids using a trainable code-
book with the gradient descent algorithm. This approach jointly
trains the networks and avoids the need to collect the updated
latent features for mean computation in every training iteration.
We initialize the codebook with the respective keywords at the
dimension of 320. Then, we extract the latent features of every
minibatch and update the embedding vectors by minimizing the
mean square error (MSE) within the class labels.

3. Experiments
3.1. Experimental Setup

Experimental Dataset. We perform our experiments using the
task 1 dataset from the MISP challenge 2021 [22]. In our work,
we only consider the audio data of 120hrs of training, where we
will build a KWS model that is robust to the home TV scenario,
i.e., noisy and far-field. In particular, a family will be seated
3-5m away from the TV, and there may be conversations while
someone is interacting with the television. A linear microphone
array (6 channels) is placed near the TV at a distance of a
far-field (3-5m) condition, and our task aims to detect the
keyword “Xiao-T Xiao-T” from the recorded utterances. In
addition, parallel recordings for mid-field (1-1.5m, 2 channels)
and near-field close-talking (0m, 1 channel) are provided.

Input Feature. We convert the wav utterance to a 40-
dimensional log Mel filterbank (FBank) with a 30ms window
size and a 10ms shift. We fixed the length of our FBank at 2s,
with shorter utterances being right-padded with zeros. During
training, data augmentation is performed with random time

shift of range between −100 to 100ms. Additionally, we apply
SpecAugmentation, which involves applying two–frequency-
and time-maskings of 25 and 7 to the audio.

Training details. We use the original noisy audio for all
multi-channel modelling. All models are trained on a batch size
of 64 and an initial learning rate (LR) of 6e-4. The LR decays
with cosine annealing, reaching a lower bound of 1e-12. We
use Adam and binary cross-entropy loss during optimization.
To account for data imbalance, we utilized oversampling with
bootstrapping to reduce the bias from class imbalance. We
trained our model with curriculum learning in three phases,
where the first phase uses near-field followed by mid-field and
then far-field dataset. No additional noise perturbation is done
during preprocessing. Since there is not much literature on
small footprint multi-channel KWS, we compare our small
footprint model with a popular approach by enhancing the
noisy far-field audio with a beamformer 1 before fitting them
to SOTA small models. This reduces the noise distortion and
improves the detection, creating a more challenging ground to
surpass, showing the significance of our work.

Metrics. We evaluate all models based on the score, i.e. sum
between the false alarm rate (FAR) and false rejection rate
(FRR). This metric offset the likelihood of an over-optimistic
assessment derived from the highly imbalanced class distribu-
tion, where FAR and FRR are defined as follows

FAR =
FP

FP + TN
FRR =

FN

FN + TP

3.2. Results

From Table 1, we can observe that the eval set is more chal-
lenging with a consistently higher error score achieved by sev-
eral SOTA models, and the official baseline (CNN-LSTM) from
the challenge has achieved a decent performance of 0.34. How-
ever, our single-channel ConvMixer with 124K parameter size
has evidently outperformed the former with a 48% boost in per-
formance, indicating the robustness of the network. Our pro-
posed multi-channel model (without centroid awareness) has
also consistently beaten the single-channel ConvMixer with an
additional relative gain of 13.9% for the dev set and 0.5% for
eval set. Most importantly, after adding the centroid awareness,
the score has a further gain of 5.6% on the eval set. From this,
we can see that the centroid awareness is more beneficial for
more noisy and challenging audio like the eval set, and even
surpassing the large 3D-ResNet model [24].

Overall, our proposed final system has achieved a total
of 54.5% improvement from the dev set and 55.8% for the
eval set in comparison to the official baseline. Besides, the
model is merely 23% in size of the baseline. In addition, we
have compared our proposed networks against recent SOTA
small footprint KWS models (i.e., MatchboxNet and Keyword
Transformer-KWT). To improve the quality of noisy far-field
audio, we employ the MVDR beamforming technique with a
90◦ beamformer, before fitting them to SOTA small footprint
KWS models. Although both models have outperformed the
official baseline, their best performance on the eval set is above
the score of 0.2. In comparison, we have outdo theirs with the
gain of at least 26.6% for the eval set and 26% for the dev set.

1https://github.com/AkojimaSLP/Beamforming-for-speech-
enhancement
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Table 1: Performance of our experimental models with Task 1, MISP challenge 2021 development and evaluation set. DA refers to the
set of data augmentations implemented in their paper. 1 estimated size from their proposed architecture

Model Architectures Params (K) Development Set Evaluation Set
FAR (↓) FRR (↓) Score (↓) FAR (↓) FRR (↓) Score (↓)

Official Baseline [22] 2,682 0.181 0.094 0.275 0.261 0.083 0.344
90◦ Beamform (MVDR) + MatchboxNet (Single-Ch) [4] 140 0.121 0.048 0.169 0.117 0.103 0.220
90◦ Beamform (MVDR) + KWT-1 (Single-Ch) [23] 607 0.135 0.060 0.195 0.054 0.153 0.207
90◦ Beamform (MVDR) + ConvMixer (Single-Ch) [13] 124 0.056 0.088 0.144 0.048 0.121 0.169
Multi-channel 3D-ResNet (DA) [24] 13,6191 0.053 0.082 0.135 N.A. N.A. 0.158
Multi-channel ConvMixer (6-Channel) [Ours] 415 0.050 0.074 0.124 0.043 0.118 0.161
Centroid Aware Multi-channel ConvMixer (6-Channel) [Ours] 622 0.034 0.091 0.125 0.044 0.107 0.152

Table 2: Performance on eval set with front-end processing

Models
Evaluation Set

Params (K) FAR (↓) FRR (↓) Score (↓)

3-look BF 473 0.047 0.090 0.137

6-channel + WPE 622 0.040 0.136 0.176

WPE + 3-look BF [Ours] 473 0.054 0.072 0.126
3D-ResNet (DA + BF) [24] 13,6191 N.A. N.A. 0.122

A-transformer (BF) [26] 15,4171 N.A. N.A. 0.106
A-conformer (BF) [26] 27,1471 N.A. N.A. 0.116

3.3. Multi-look Beamformer and WPE

In this section, we combine front-end enhancement as in [16,
25] to maximize the potential of our framework by modifying
it into a multi-look beamforming KWS. We replace the raw mi-
crophone array with a set of beamformed (BF) signals aimed
at 10◦, 90◦ and 170◦, respectively. We also include a refer-
ence wav signal from channel-0 raw to preserve the informa-
tion of the original utterance. Additionally, we have considered
dereverberation with WPE 2. Altogether, we obtain an enhanced
multi-look (3-look BF + ch0) KWS ConvMixer model with cen-
troid awareness.

The results presented in Table 2 show that the 3-look beam-
formed signals of our model obtain a score of 0.137 and a gain
of 10%. However, dereverberation with WPE alone does not
help to build a better system, likely due to the generated arti-
facts that instil adverse distortion. Furthermore, dereverbera-
tion seems to lower our FAR performance. By combining the
two, our proposed model has attained the score of 0.126 with
a relative gain of 63% compared to the baseline, despite incur-
ring only a small fractional cost in latency for the front-end en-
hancement. Furthermore, we compare our final system against
the latest SOTA performance for this competition dataset. Our
model fares well against the 3D-ResNet with similar perfor-
mance but is only 3.4% of its size. However, we did not out-
perform the transformer and conformer models. Despite that,
our model is only 3.0% of the size of transformer and 1.7% of
conformer. Moreover, all of the reported SOTA models (3D-
ResNet, transformer, conformer) were trained with augmented
noise and speed perturbation that increased the training data by
more than 3 times. In contrast, we did not use those technique
as we aimed to analyze and evaluate our proposed architecture
with minimal benefits from increasing data volume.

3.4. Effect of the proposed Centroid Based Awareness

To demonstrate the effectiveness of our proposed Centroid
Based Awareness method, we use a t-SNE plot as Figure 2
to show the difference between our centroid method and the
vanilla method for the latent space embedding approach using

2https://github.com/fgnt/nara wpe

Figure 2: The t-SNE plot to show the effectiveness of the
centroid method from the latent space embedding approach
using Google Command dataset [27] and mixing with -5dB
FreeSound [28] noise.

the Google Command dataset [27] mixed with -5dB FreeSound
[28] noise. This helps to illustrate the effect of our method with
a controlled noise level at -5dB. As shown in the plot, our cen-
troid method results in well-separated clusters without multi-
ple sub-clusters and a smaller area of discrepancy, indicating
its higher confidence and lower model error compared to the
vanilla method.

4. Conclusions
To conclude, we proposed a novel small-footprint model for
multi-channel KWS with a ConvMixer module and centroid-
based awareness. Our model achieves a compelling gain with
a score of 0.126 and a 63% boost against the official base-
line in noisy and far-field environments. Additionally, our
best model framework outperforms recent SOTA small footprint
KWS models with 473K parameters and is competitive against
SOTA models for this dataset but with smaller parameters (3%
in size). Overall, our model demonstrates better robustness in
noisy and far-field environments.
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