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Abstract
Speech sound disorder (SSD) in children is manifested by
persistent articulation and phonological errors on specific
phonemes of a language. Automatic SSD detection can be
done using features extracted from deep neural network mod-
els. Interpretability of such learned features is a major concern.
Motivated by clinical knowledge, the use of duration and for-
mant features for SSD detection is investigated in this research.
Acoustical analysis is performed to identify the acoustic fea-
tures that differentiate between the speech of typical and dis-
ordered children. On the task of SSD detection in Cantonese-
speaking children, the duration features are found to outperform
the formant feature, and surpass previous methods that use par-
alinguistic feature set and speaker embeddings. Specifically,
the duration features achieve a mean unweighted average recall
of 71.0%. The results enhance the understanding of SSD, and
motivate further use of temporal information of child speech in
SSD detection.
Index Terms: child speech, speech sound disorder, detection of
pathological speech, vowel duration, formant frequency.

1. Introduction
Speech sound disorder (SSD) refers to one of the most common
developmental disorders in which children encounter persistent
difficulties in correctly pronouncing certain speech sounds after
the expected age of acquisition. The most common symptom of
SSD is manifested as substitution, omission, distortion, and in-
sertion of speech sound(s) in a word. Population studies report
that the prevalence of SSD ranges from 2% to 25% in children
aged below 7 [1–3]. Timely diagnosis of SSD is crucial to effec-
tive treatment and rehabilitation. Clinical assessment of SSD is
carried out by qualified speech-language pathologists (SLP) [4].
The assessment aims to analyze the child’s phonetic inventory
and patterns of speech sound errors that are likely related to
SSD. Given the scant resource of speech-language pathology
services in public [5, 6], automated detection tools for SSD are
desired to alleviate the burden on SLPs and benefit a large pop-
ulation of children at risk.

Automatic detection of SSD is the task of distinguish-
ing abnormal speech sound production from typical one based
on acoustic speech signals. Acoustical characteristics of dis-
ordered speech are routinely captured by fixed-dimensional
embeddings derived from deep neural network (DNN) mod-
els. In [7–9], Siamese neural network was trained to derive
phone embeddings from monophone/diphone segments to de-
tect speech sound errors in disordered child speech. DNN
trained for speaker verification [10], or pre-trained by self-
supervised learning [11], was applied to derive the speaker em-
beddings that reflect the overall goodness of speech sound pro-

duction. However, interpreting the acoustic information encap-
sulated in DNN embeddings is a difficult task. This limitation
hinders the practical use of these systems in clinical applica-
tions.

Features designed with domain knowledge that describe the
speech characteristics of disordered speech are alternative op-
tions to DNN embeddings. The hand-crafted features are inter-
pretable, of which the extraction does not require DNN, and is
computationally efficient. The extended Geneva Minimalistic
Acoustic Parameter Set (eGeMAPS), as described in [12], was
shown to be efficacious in various tasks related to speech disor-
ders [13,14]. To further improve detection performance and en-
hance understanding of the disorder, attempts have been made
to design novel features that describe specific acoustic charac-
teristics of disordered speech. In [15], the use of features con-
cerning the segmental distortion, loudness, and hyper-nasality
in the speech was shown to outperform eGeMAPS in distin-
guishing between Apraxia and Dysarthria. In [16], features re-
lated to utterance duration, speaking rate, pitch, and intensity of
speech were used to determine the empathy level in conversa-
tional speech.

Speech sound acquisition involves different abilities, in-
cluding phonological knowledge, speech perception, motor
learning, cognitive- and meta-awareness, etc. Difficulties in any
of these abilities can lead to multiple effects on the produced
speech, e.g. atypical distribution of speech segment duration
and formant frequencies as compared to typically-developing
(TD) speech [17, 18]. The present study investigates the use of
duration feature and formant feature in automatic detection of
SSD in children. The duration features include the duration of
words and duration of long and short vowels. The formant fea-
ture include the first, second, and third formant frequencies of
the long vowels. Acoustical analysis is carried out with a set of
words selected for articulation test. The duration and formant
features are analyzed to reveal the developmental differences in
speech characteristics in TD and disordered speakers. Statis-
tical tests, i.e. z-test, are performed to determine the parame-
ters that reflect the discrepancy between the TD and disordered
speech. In SSD detection, speaker-level feature vectors are con-
structed from duration and formant features derived from word
utterances. We will compare the feature vectors with the par-
alinguistic feature and the speaker embeddings as applied in ex-
isting detection approaches.

2. Background
2.1. About Cantonese

The present study concerns SSD in children who speak a spe-
cific language, namely Cantonese as spoken in Hong Kong.
Cantonese is a major Chinese dialect widely spoken by mil-
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Figure 1: Vowels in Cantonese [19].

Table 1: Partition of Speakers in experiments.

Type Partitions Age
3 4 5 6

TD
Train 20 141 120 47
Test 27 30 37 6

Total 47 171 157 53

SSD
Train 6 25 11 8
Test 23 37 31 9

Total 29 62 42 17

lions of people. It is a monosyllabic and tonal language. Each
Chinese character is pronounced as a single syllable carrying
a lexical tone. Adopting the Cantonese inventory proposed by
Bauer and Benedict, there are 19 initial consonants, 11 vowels
and 6 lexical tones in Cantonese [19]. Vowel segments are in-
volved in acoustical analysis and SSD detection in this work.
The vowel inventory of Cantonese is illustrated in Figure 1.

2.2. Speech Database: CUCHILD

Experiments on speaker-level SSD detection are carried out
with a large-scale child speech database named CUCHILD [20].
The database contains speech data from 1, 986 children aged 3
- 6 in Hong Kong local kindergartens. All speakers use Can-
tonese as their first language for daily communication. The
speech materials consist of 130 Cantonese words of 1 to 4
syllables in length. These words cover Cantonese consonants
and vowels of Cantonese. About 230 children in the database
were found to have SSD by comparing their phonetic inventory,
scores obtained from the Hong Kong Cantonese Articulation
Test (HKCAT), and the patterns of speech sound errors [21].
Speech sound errors made by the SSD speakers were carefully
annotated by four SLP trainees.

In this study, we use the speech data from 428 typically
developing (TD) children and 150 disordered. The speech
from 328 TD speakers is used to train the acoustic model of
child speech, which is used for obtaining time alignments of
word/vowel segments. Speech from 50 disordered speakers are
involved in the training of SSD detection system. The remain-
ing 100 TD and 100 SSD speakers are used for acoustical anal-
ysis, as well as performance evaluation. The age distributions
of speakers in the training and test data are given in Table 1.

3. Proposed System and Feature Design
In standardized SSD assessment of young children, a set of
designated test words is used for all subjects. The test words
are selected purposely based on linguistic and clinical knowl-
edge [21, 22]. The proposed system for SSD detection is de-

Figure 2: Speaker-level SSD detection system.

picted in Figure 2. For each speaker, multiple acoustical param-
eters are derived from the test words. These parameters include
the duration of words of different syllable counts, the duration
of the three short vowels /5 e o/, as well as the duration and
the formant frequencies of the five long vowels /a: i: E: O: u:/.
Production of words requires various degrees of coordination
between the major articulators, while the production of vowels
reveals different oral cavity configurations in vowel production.
The above feature parameters are extracted to characterize the
maturity of speech production in the child subject. The means
and standard deviations of all acoustic parameters, and the age
of the speaker, are used to construct a speaker-level feature vec-
tor. A support vector machine (SVM) is trained on the feature
vectors to determine if the speaker is TD or disordered.

4. Acoustical Analysis
In this section, we analyze the acoustic parameters, i.e. dura-
tion and formants in TD and disordered children. For each pa-
rameter, a statistical test (z-test) is performed between TD and
disordered speakers at the same age. The p-value is adjusted by
the Benjamini-Hochberg procedure across age [23]. Disordered
children typically delay motor skill development. They would
be less skillful in executing the required steps of speech sound
production. Therefore, we hypothesize that vowel and word
segments in disordered speech are longer than in TD speech,
and that the mean values of F1 to F3 in each type of vowel have
discrepancies between TD and disordered speech. A signifi-
cance threshold of 0.05 is used. The effect size is measured by
Cohen’s d.

4.1. Data preparation

To locate the word and vowel segments, forced alignment is ap-
plied with a Gaussian Mixture Model - Hidden Markov Model
(GMM-HMM) based acoustic model. The acoustic model is
trained with Mel-frequency cepstral coefficients (MFCC) ex-
tracted every 10 ms with a 25 ms Hamming window. Formant
frequencies are extracted using the Praat software by linear pre-
dictive analysis with Burg’s algorithm [24–27]. Children typ-
ically have higher formant frequencies than adults due to the
short vocal tract [28]. Depending on the height and frontness
of the vowels, the ceiling values of formant frequencies are
empirically set to 8000 Hz for vowel /i:/, 7500 Hz for vow-
els /E:/, 7000 Hz for vowels /a:/, and 4500 Hz for /O: u:/. Five
formant values are measured at each time frame. The formant
contours are smoothed using a 3-point median filter. The me-
dians of smoothed frequency contours are computed [29]. To
exclude possible outliers from acoustical analysis, we retain the
vowel duration, word duration, and formant frequencies that fall
within the range of 5th-95th percentile across all measurements.
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Table 2: Duration of the five Cantonese long vowels, measured in milliseconds (∗ p<0.05, ∗∗ p<0.01, ∗∗∗ p<0.001).
Age /a:/ /i:/ /u:/ /E:/ /O:/

TD SSD d TD SSD d TD SSD d TD SSD d TD SSD d
3 312±10 341±10 0.297∗∗∗ 170±8 192±9 0.255∗∗∗ 132±6 147±7 0.245∗∗∗ 274±7 320±8 0.627∗∗∗ 252±10 264±10 0.131
4 317±9 334±10 0.173∗ 181±8 190±9 0.118∗∗ 152±6 152±6 0.002 291±8 315±8 0.307∗∗ 237±9 266±10 0.301∗

5 303±10 340±10 0.383∗∗∗ 170±8 184±8 0.164∗∗∗ 141±6 143±6 0.042 283±8 308±8 0.301∗∗ 233±9 267±10 0.368∗∗∗

6 292±8 299±9 0.085 166±8 163±8 0.045 137±5 138±6 0.019 273±6 270±7 0.036 226±7 233±7 0.146

Table 3: Duration of the three Cantonese short vowels, measured in milliseconds.

Age Short vowel
/5/ /e/ /o/

TD SSD d TD SSD d TD SSD d
3 126±5 145±6 0.351∗∗∗ 197±8 210±8 0.162 176 +-8 195±9 0.231∗

4 126±5 136±5 0.211∗∗∗ 195±7 202±7 0.089 175±7 176±7 0.017
5 120±5 137±5 0.362∗∗∗ 186±7 204±8 0.242∗∗ 173±8 192±8 0.249∗∗

6 109±4 118±4 0.216∗∗ 173±6 179±6 0.103 159±7 151±5 0.146

Table 4: Duration of test words of different syllable counts, mea-
sured in milliseconds.

Age
3 4 5 6

Sy
lla

bl
e

C
ou

nt

1
TD 502±140 528±139 507±136 475±118

SSD 532±151 519±138 539±150 510±170

d 0.206∗∗∗ 0.066 0.221∗∗∗ 0.234

2
TD 749±167 760±164 724±166 685±127

SSD 801±187 782±172 790±177 746±196

d 0.296∗ 0.129∗ 0.384∗∗∗ 0.355∗

3
TD 1029±205 1019±202 974±203 928±157

SSD 1046±225 1072±210 1054±219 995±185

d 0.076 0.257 0.377∗∗∗ 0.386

4
TD 1399±286 1444±296 1342±369 1189±180

SSD 1400±307 1457±319 1450±274 1274±195

d 0.002 0.040 0.323∗∗ 0.444∗

4.2. Results of duration analysis

Table 2 and Table 3 report the statistics of vowel duration in
speakers aged from 3 to 6. Vowel duration decreases in long
vowels /a: O:/ and all short vowels as age increases. In long
vowels /i: u: E:/, the decrease in vowel duration is observed
in disordered speakers. This suggests a developmental differ-
ence in vowel production between TD and disordered speakers.
From age 3 to 5, disordered speakers tend to have longer vowel
duration than TD speakers, as evidenced by the statistical signif-
icance and the effect size. In speakers aged 6, the difference in
vowel duration between TD and disordered speakers vanishes,
except for the short vowel /5/.

Table 4 reports the statistics of word duration. For all speak-
ers, the word duration decreases as age increases. In tri-syllable
and quad-syllable words, there is no statistical significance in
word duration between TD and disordered speakers aged 3 and
4, whilst statistical significance is found in speakers aged 5 and
6. Between ages 3 and 6, the duration of mono-syllable and
di-syllable words decreases by about 20 ms and 60 ms in TD
and disordered speakers respectively. In tri-syllable words, the
decrease in duration is about 100 ms in TD speakers and 60 ms
in the disordered. In quad-syllable words, the decrease is about
200 ms in TD speakers and 130 ms in the disordered. The re-
sults suggest that disordered children could delay in mastering
the motor skills to produce words of longer length.

4.3. Results of formant analysis

Tables 5, Table 6, and Table 7 show the statistics of the formant
frequencies of the five long vowels. As age increases, F1 shows
a decreasing trend in all vowels. In particular, the F1 values in

TD and disordered speech at age 5 are significantly different in
/a: E: O:/. A decrease in F2 is observed in /a: E:/, while F2 is
steady in /i: u: O:/ as the age increases. The F2 frequency in TD
and disordered children aged 3 is significantly different in /i: E:
O:/. The differences are also observed in /i: u: E: O:/ in speakers
aged 4, and in /a: i: O:/ in speakers aged 5. As age increases, the
F3 frequency increases in back vowels /u: O:/, and decreases in
/a: i: E:/. The F3 frequency in TD and disordered children aged
3 is significantly different in /E: U: O:/, and in /a: E:/ in speakers
aged 6. The formant analysis suggests F1-F3 frequencies in
different vowels could reflect the discrepancy between TD and
disordered speakers.

5. Experiments on SSD Detection
To compose the speaker-level feature vector for SSD detection,
vowel duration, word duration, and F1-F3 frequencies produce
16, 6, and 31 statistical measures respectively. Three types of
feature vectors are experimented with to evaluate the efficacy of
duration and formant frequencies for SSD detection. The first
type contains the mean and standard deviation of F1-F3, i.e.,
only formant information. The second type contains the mean
and standard deviation of word and vowel duration. Duration
of quad-syllable words is not used in the experiment, as speech
data of quad-syllable words in some of the speakers were con-
taminated by background noise, or could not be located dur-
ing data post-processing. The third type of feature vector is the
combination of duration and formant parameters. The speaker’s
age is appended to all three types of speaker vectors. As cer-
tain acoustic parameters could be less efficacious in reflecting
the differences between TD and disordered speakers, recursive
feature elimination (RFE) is applied to eliminate redundant pa-
rameters [30]. The number of parameters to be selected, k, is
set empirically. The top-k most important parameters are de-
termined based on a cross-validation classification experiment
using speech data from the training set in Table 1.

The eGeMAPS is used [12] as the baseline feature. Us-
ing the OpenSmile toolkit [31], 42 low-level descriptors (LLDs)
are computed to characterize the spectral characteristics of the
speech signal. A 88-dimensional feature vector is derived from
the LLDs by statistical functionals. Besides, speaker embed-
dings, namely the i-vector and the x-vector as extracted from
speaker verification (SV) systems, are adopted as another type
of baseline features in this study [10]. The i-vector and x-vector
are used to capture the holistic characteristic of child speech.
The i-vector is extracted by a Gaussian Mixture Model - Uni-
versal Background Model [32], and the x-vector is extracted by
a time-delayed neural network (TDNN) [33]. Both i-vector and
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Table 5: F1 frequencies in the five Cantonese long vowels, represented in semitones.

Age Long vowel
/a:/ /i:/ /u:/ /E:/ /O:/

TD SSD d TD SSD d TD SSD d TD SSD d TD SSD d
3 42.8±2.1 42.3±2.3 0.199∗ 30.7±2.5 30.6±2.6 0.055 30.6±2.1 30.7±2.3 0.035 37.2±2.1 37.3±2.3 0.047 34.0±2.1 34.1±2.0 0.050
4 42.4±2.1 42.3±2.1 0.041 30.2±2.5 30.0±2.4 0.066 30.5±2.2 29.9±2.1 0.251∗∗∗ 36.2±2.1 36.7±2.4 0.221 34.6±2.3 34.2±2.3 0.176∗

5 41.1±2.1 42.6±2.0 0.686∗∗∗ 29.8±2.6 29.9±2.8 0.023 30.3±2.3 30.3±2.3 0.016 35.7±2.2 36.9±2.3 0.541∗∗∗ 34.2±1.9 35.0±2.0 0.407∗∗∗

6 40.6±2.0 40.9±2.0 0.151 29.1±2.3 29.1±2.3 0.029 29.8±2.3 29.9±2.2 0.042 35.3±1.8 34.8±1.8 0.294 33.7±1.6 34.1±1.6 0.260

Table 6: F2 frequencies in the five Cantonese long vowels, represented in semitones.

Age
Long vowel

/a:/ /i:/ /u:/ /E:/ /O:/
TD SSD d TD SSD d TD SSD d TD SSD d TD SSD d

3 51.8±1.9 51.6±1.7 0.120 57.5±2.4 58.1±2.2 0.236∗∗∗ 42.4±2.7 42.3±2.6 0.026 57.5±1.3 57.0±1.5 0.325* 41.9±1.9 42.5±1.9 0.360∗∗∗

4 51.6±1.8 51.5±1.7 0.037 57.5±2.3 57.9±2.3 0.176∗∗∗ 42.4±2.5 41.9±2.6 0.220∗∗∗ 57.1±1.1 56.7±1.3 0.302∗ 42.5±1.9 42.2±1.8 0.171∗

5 51.2±1.8 51.6±1.7 0.249∗∗ 57.7±2.2 58.0±2.1 0.136∗∗∗ 42.3±2.5 42.2±2.4 0.043 56.7±1.0 56.7±1.1 0.036 42.5±1.8 42.8±1.7 0.173∗

6 50.8±2.0 50.3±1.9 0.280 57.8±2.0 57.6±1.8 0.151 42.5±2.5 42.3±2.4 0.091 56.5±1.0 56.4±1.2 0.076 42.2±1.7 42.4±1.5 0.145

Table 7: F3 frequencies in the five Cantonese long vowels, represented in semitones.

Age
Long vowel

/a:/ /i:/ /u:/ /E:/ /O:/
TD SSD d TD SSD d TD SSD d TD SSD d TD SSD d

3 62.7±1.6 62.6±1.6 0.069 63.8±1.3 64.1±1.3 0.187∗∗∗ 52.9±1.8 53.2±1.8 0.168∗∗ 64.3±1.3 64.3±1.2 0.008 49.9±2.7 50.6±2.5 0.267∗

4 62.2±1.4 62.1±1.5 0.105 63.6±1.1 63.7±1.1 0.088∗ 53.0±1.6 53.0±1.7 0.022 64.1±1.1 63.8±1.1 0.285 50.8±2.9 50.3±2.6 0.161
5 61.7±1.5 61.7±1.4 0.007 63.4±1.0 63.5±1.1 0.088∗ 53.2±1.6 53.3±1.6 0.038 63.4±1.0 63.3±1.1 0.136 51.5±2.8 51.3±2.8 0.066
6 61.2±1.2 60.6±1.1 0.487∗ 63.3±0.9 63.1±1.0 0.246∗∗ 53.8±1.3 53.6±1.5 0.087 63.0±0.8 63.0±0.8 0.002 52.0±2.6 52.3±2.5 0.133

x-vector extractors are trained on the MFCCs extracted from
speech data in the training set. The dimensions of the i-vector
and x-vector are 100 and 512 respectively, which are further
reduced to 30 using principal component analysis (PCA). Both
i-vector and x-vector systems are implemented by Kaldi [34].

Using scikit-learn [35], the SVM for speaker-level SSD de-
tection is trained on the proposed feature vectors, paralinguistic
features, or speaker embeddings. A linear kernel and a regular-
ization parameter of 1.0 are used.

6. Results

5-fold cross-validation experiments on SSD detection are car-
ried out with the test set as described in Table 1. The re-
sults of classification using the proposed speaker-level feature
vectors, the paralinguistic features, and the speaker embed-
dings are given in Table 8, in terms of the unweighted aver-
age recall (UAR). Without applying RFE, the duration feature
achieves 66.0± 10.6% UAR, and the formant feature achieves
57.5±7.9% UAR. The duration feature outperforms eGeMAPS
and x-vector. Combining formant feature and duration feature
can help reduce the standard deviation. When RFE is applied,
a performance gain is observed in both duration and formant
features, and eGeMAPS. The duration feature, of which the di-
mension is reduced to 10 by RFE, achieves the best performance
of 71.0 ± 3.0% UAR, whilst the eGeMAPS improves the per-
formance to 69.5 ± 6.6% with the dimension being reduced
from 88 to 70. The dimension-reduced duration feature also sur-
passes the i-vector approach, which has a UAR of 67.0±7.8%.
Using RFE, the joint use of the formant and duration features
achieves a 69.5 ± 8.6, which is still surpassed by the sole use
of the duration feature. Overall, the vowel and word duration
are shown to be promising features in the detection of SSD in
children. For F1-F3 frequencies, despite significant differences
in numerous vowels between TD and disordered speakers have
been observed, the constructed formant feature is shown to be
impotent to SSD detection.

Table 8: SSD detection performance.

Speaker-level Feature Without RFE With RFE
UAR Dim. UAR Dim.

Duration+Age 66.0±10.6 23 71.0±3.0 10
Formant+Age 57.5±7.9 31 59.5±2.9 20

Duration+Formant+Age 66.0±7.5 53 69.5±8.6 10
eGeMAPS 61.0±6.8 88 69.5±6.6 70

x-vector 65.0±8.5 256 - -
i-vector 67.0±7.8 100 - -

7. Conclusion

In this study, we demonstrate the use of small numbers of hand-
crafted features in subject-level SSD detection. The design of
hand-crafted features is inspired by clinical knowledge about
child speech development. Acoustical analysis has shown that
duration and formant frequencies of vowels, and duration of
words, can reflect changes of speech characteristics in disor-
dered speech. The cross-validation experiment of SSD detec-
tion has demonstrated that the use of duration feature is effec-
tive in SSD detection. It outperforms the formant feature, the
conventional paralinguistic feature, and the speaker embeddings
derived from state-of-the-art speaker verification systems. The
present results serve to enhance our understanding of SSD, and
motivate future designs of detection methods that utilize tem-
poral information of child speech. Our future work will focus
on erroneous consonant production that is difficult to be iden-
tified by SLPs, with the aim to further develop more novel and
interpretable acoustic features for SSD detection.
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