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Abstract
Measuring confidence in Automatic Speech Recognition (ASR)
is important for ensuring the reliability of downstream applica-
tions. Previous works proposed Confidence Estimation Module
(CEM) for predicting confidences for autoregressive attention-
based and neural transducer architectures. However, CEM for
connectionist temporal classification (CTC) models have not
been explored. In this work, we expand the idea of CEM to CTC
models and further propose considering surrounding words for
estimating confidences. Our experiments on four test sets in two
languages demonstrate that our proposed method significantly
reduces calibration errors of both common and rare words com-
pared to naive confidences from CTC softmax. Moreover, we
show that the approach is also effective for hard words and out-
of-domain test sets, indicating its potential to be used as a reli-
able trigger for human intervention.
Index Terms: speech recognition, confidence estimation, CTC
models

1. Introduction
Confidence scores play a vital role in ensuring the reliability and
trustworthiness of various applications since the scores could
tell how much the users can trust the systems [1, 2, 3]. In
semi-supervised learning, confidence scores are used to manage
the quality of pseudo-labeled data, preventing noisy transcrip-
tions from harming the model’s performance [4, 5, 6, 7]. In
autonomous systems, confidence scores serve as a crucial fail-
safe mechanism. They can be utilized to select between models
that perform well at different characteristics of levels of data
complexity [8] or notify human operators to intervene when the
scores fall below a predetermined threshold [1, 2]. In the case
of Automatic Speech Recognition (ASR), confidence scores can
be easily measured in traditional hybrid ASR frameworks [9].
However, obtaining reliable scores for recent end-to-end ASR
models is not straightforward [10].

End-to-end neural networks have become increasingly pop-
ular in ASR due to their simplified data pipeline and superior
performance compared to hybrid systems [11, 12, 13]. These
models produce probabilities for each output unit in the prede-
fined set of tokens directly using a softmax function, allowing
for straightforward use of these probabilities as confidence mea-
sures [14]. However, recent research has shown that these prob-
abilities are often unreliable as the models tend to be overcon-
fident in their predictions [15]. This overconfidence can make
it difficult to accurately assess the reliability of ASR outputs.
To address this issue, researchers have developed methods to
calibrate the softmax probabilities [15] and/or estimate the con-
fidence using an external predictive model such as Confidence
Estimation Module (CEM) [8, 16, 17, 18].

CEM utilizes relevant features extracted from an ASR
model to estimate confidence scores for predicted tokens or
words. However, previous works have mainly focused on build-
ing CEM for attention-based sequence-to-sequence [16] and
neural transducer networks [8, 17, 18, 19], which are resource-
intensive models. On the other hand, the effectiveness of CEM
for a more resource-friendly ASR model, connectionist tempo-
ral classification (CTC), remains underexplored. Despite its
lower performance compared to the first two models, CTC-
based ASR requires less computational power and memory
footprints during training [20, 21, 22, 23]. Additionally, CTC
is still dominantly used in other relative sequence-to-sequence
tasks such as handwriting recognition [24, 25, 26]. Therefore,
in this work, we aim to extend the use of CEM to CTC models.

In this paper, we propose a novel method for estimating
word confidences of CTC predictions using a CEM. We intro-
duce new features for the CEM and develop an algorithm that
extracts these word-level features from the CTC softmax out-
puts. We evaluate a simple multi-layer perceptron (MLP) CEM
that independently predicts confidence for each word, and pro-
pose to use Transformer CEM in order to take the entire sen-
tence into account. Unlike [16], our CEM directly produces
word confidences from word-level features. To the best of our
knowledge, this is the first paper that uses CEM for CTC mod-
els and evaluates the impact of considering the entire sequence
of CTC predictions for confidence estimation.

Our experimental results demonstrate that both variations of
the proposed CEM significantly outperform naive confidences
derived from CTC softmax on four test sets in two different
languages, Thai and English. We observe substantial improve-
ments in alignments between confidences and correction rates
on LibriSpeech test-clean/test-other [27] and CommonVoice
[28], as well as on Thai Podcast [29] and mock technical inter-
views test sets. Moreover, we show that the Transformer CEM,
which considers the surrounding context, is more robust to un-
seen domains compared to the other methodologies we tested.

2. CTC Model
CTC model [30] is trained to maximize probabilities of predict-
ing a transcription y = (y1, y2, ..., yU ) for an input sequence
x = (x1, x2, ..., xT ). CTC model does not require ground-
truth alignments for training, the model increases the likelihood
of any possible alignments that can represent the target tran-
scription, as shown in (1).

P (y|x) =
∑

π:B(π)=y

P (π|x) =
∑

π:B(π)=y

T∏

t=1

P (πt|xt) (1)
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(a) Estimating confidences using CTC softmax (b) Estimating confidences using CEM

Figure 1: Confidence estimation for CTC models. Despite having many steps in common, CEM mainly operates on logits while CTC
softmax uses scalar confidence values. Oranges, green, and red regions represent the target token, target word, and word boundaries,
respectively. Note that orange regions are parts of the target word.

where π = (π1, π2, ..., πT ) is an alignment and πt ∈ A′ =
A ∪ {ϵ}. The set A′ contains both alphabets and the blank to-
ken (ϵ), which is used to handle non-phonetic ambiguous cases.
The function, B : A′ 7→ A, maps between alignments and
transcriptions by removing repeated and blank tokens.

During inference, the CTC model predicts the transcrip-
tion by aggregating the most likely tokens of every timestep as
shown in (2). We use CTC argmax decoding for simplicity.

y∗ = argmaxy∗P (y∗|x) = argmaxπ:B(π)=y∗

T∏

t=1

P (πt|xt)

(2)
The mapping function B, while removing the reliance on

ground-truth alignments, complicates the process of obtaining
token posteriors for estimating confidences. Letters with long
pronunciation are continuously predicted in consecutive align-
ment frames and will be merged into a single character by the
mapping function B . This behavior hinders the direct use of
model outputs as confidence scores because a single predicted
letter can have many posteriors. For an example alignment
π = (c, a, a, ϵ, t) predicted by the CTC model, merging con-
secutive posteriors for the letter a and dealing with the proba-
bility of the blank token are necessary to obtain the posterior for
each individual token in the final transcription, y = (c, a, t).

3. Confidences for CTC Models
This section present approaches for estimating confidences of
CTC predictions. We firstly provide an algorithm for acquiring
confidences using token posteriors from CTC softmax outputs.
Then, we propose to compute confidence scores using CEM.
Procedures for each method are displayed in Figure 1.

3.1. CTC softmax as confidences

We propose to disambiguate choices of consecutive duplicate
confidences by aggregating the posteriors of every correspond-
ing frames. Specifically, we denote logit, zkt : z ∈ RT×|A′|,
as the pre-softmax hidden features for an alphabet, k ∈ A′,
at frame t. The alignment at frame t is the character with the
highest logit, πt = argmaxkz

k
t . For a given letter yu in the

predicted transcript y = B(π), we obtain its corresponding
logit, ẑu : ẑ ∈ RU×|A′|, by applying an aggregation func-
tion on the region of the sequence z where yu is derived from,
yu = B(πt:t+N ). This is shown in (3) below:

ẑu = aggf (zt:t+N ) where ∀0≤n≤Nπt = πt+n (3)

We explore min, max, and mean as an aggregation function
(aggf ) for the frame-level outputs. To obtain the probability

of the predicted token yu, we apply the softmax function to the
aggregated logits, CL(yu) = S(ẑu)yu where CL(·) is a token-
level confidence function and S(ẑu)yu is the softmax output at
position u for the letter yu.

We split the sequence of letter-level confidences into sub-
sequences using the predicted word boundaries. For each sub-
sequence, the second aggregation is applied in order to get the
word-level confidences as shown in (4).

CW (wi) = mean(CL(ẑu:u+m)) (4)

where [u, u + m] is the boundary for the word wi, excluding
the boundary tokens. We acquire word boundaries using spaces
predicted by the ASR model. Probabilities of blank outputs also
contribute to word confidences even though they do not repre-
sent any letters in the predictions. Though these confidences are
derived from argmax posteriors, our approach is also compati-
ble with probabilities from beam search decoding.

3.2. Confidence Estimation Module

To have better calibrated confidence scores, we adopt the idea of
using a learnable CEM [16, 8] for predicting confidences. CEM
does neither calibrate letter nor word confidences from CTC
posteriors. Instead, CEM directly computes word-level confi-
dences using word-level features aggregated from CTC logits.

Concretely, let the word wi comprises the letters yu:u+m

predicted by the CTC model. We denote the logit for the word
wi as z̄i = aggl(ẑu:u+m) where aggl is an aggregation func-
tion. CEM takes the aggregated logits (z̄i), softmax of the logits
(S(z̄i)), the predicted tokens (ρ(wi)), and the number of char-
acters within the word (η(wi)) as shown in (5).

CEM(wi) = σ(θ([z̄i; S(z̄i); ρ(wi); η(wi)]) (5)

where θ is a trainable neural network, σ is a sigmoid function,
and ρ(wi) is a summation of one-hot vectors of every alphabets
in the word wi. From now on, we will use the term aggregation
to refer to both aggf and aggl, interchangeably.

We study two different types of neural networks for CEM
in order to compare the effects of contexts to word confidences.
The first variant is MLP CEM (CEMMLP), which independently
computes a confidence for each word in the sentence. We pro-
pose to consider the whole sentence as contexts for confidence
prediction by using a Transformer encoder as MLP (CEMTran).

CEM is trained using binary cross entropy loss with the aim
of modeling the probability of wi being a correct word. We fol-
low [16] and acquire the word-level ground-truths for CEM us-
ing edit-distance between predicted and ground-truth transcrip-
tions. Correctly aligned words are positive training samples,
while any substitution and insertion errors are negative samples.
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It is important to note that our method does not take deletion er-
rors into account, similar to [16].

4. Experimental setup
This section provides detailed information about the ASR and
CEM models, including their training configurations, as well as
info about the datasets and evaluation metrics.

4.1. Corpora

We used English and Thai corpora for training our ASR mod-
els and CEMs. The entire 960 hours of LibriSpeech was used
to train the English ASR model [27]. The English CEM was
trained using the train-clean-100 subset. As for the evaluation,
we used test-clean and test-other sets as in-domain test sets and
used CommonVoice [28] as the out-of-domain test set.

The Thai ASR model and CEM were trained on 150 hours
of Thai Podcast [29]. Thai CEM was evaluated using a 27-hour
in-domain test set and 8 hours of mock technical interview cor-
pus. The latter corpus consisted of 6k utterances, of which 27%
contains code-switching. There were 91k Thai words and 3k
English words in the dataset. Pre-existing spaces were removed
and word tokenization was performed using DeepCut to ensure
consistent use of spaces [32].

4.2. Evaluation metrics

We adopt four common metrics for the evaluation, includ-
ing normalized cross entropy (NCE), expected calibration error
(ECE), area under receiver operating characteristic curve (AU-
ROC), and area under precision-recall curve (AUPR).

NCE and ECE both measure dissimilarities between actual
and predicted errors. NCE depicts the differences between en-
tropy of confidences and word correction rate (WCR), which is
the ratio between number of correctly predicted words to the to-
tal number of words. ECE estimates absolute distances between
binned confidences and WCR: ECE =

∑
i
|Bi|
N

|WCR(Bi) −
avgConf(Bi)|. We equally binned confidences into 10 bins.

AUROC and AUPR measure the capability of using confi-
dence scores as classification thresholds for distinguishing be-
tween correctly and wrongly predicted words. Since our ASR
system achieved low WER, we reported AUPR of wrongly pre-
dicted words to highlight the differences between the methods.

4.3. ASR models

We utilized a small Conformer-CTC model with 16 Conformer
encoders and approximately 13 million parameters for our ASR
system [33]. The model consumed 80-dimension filterbanks
and produced character outputs. We trained the models from-
scratch using AdamW optimizer [34] and Noam annealing [35]
scheduler with the batch size of 128. The warm-up steps were
set to 10k, and the initial learning rate was 1.0.

Our English model achieved word error rates (WERs) of
5.1%, 13.5%, and 43.3% for the test-clean, test-other, and Com-
monVoice, respectively. The model was trained for 200 epochs
and had 29 output letters. The Thai model had 93 characters,
was trained for 300 epochs, and had the WERs of 17.9% and
30.8% for Podcast and Mock Interview, respectively. We fol-
lowed NeMo settings for unstated training configurations [36].

4.4. CEM

CEMMLP was implemented using three feed-forward layers and
Swish [37] activation function. As for CEMTran, we used a
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Figure 2: Calibration plots for the CommonVoice test set. PMF
is probability mass function.

single block of a 256-dimensional Transformer encoder with
a single-head attention and a dropout rate of 0.1. Both mod-
els were trained using the same data, and the best checkpoints
were selected based on the AUROC and NCE of the develop-
ment set. We used the mean as the frame-level aggregation for
every method, following the findings in Section 5.4.

5. Experimental results
This section presents comparative analyses showing the effec-
tiveness of the proposed methods and their limitations.

5.1. Confidences for English Corpora

This section presents a comparison for different confidence esti-
mation methods, including the baseline CTC softmax (Sec. 3.1),
Temperature scaling (Temp) [15], Entropy [31], CEMMLP, and
CEMTran. Their performances are presented in Table 1.

We found that both CEM approaches outperformed the con-
fidences derived from CTC posteriors in every metric, indicat-
ing that they are more reliable for estimating confidence scores.
CTC softmax, Temp, and Entropy performed decently as clas-
sification thresholds based on the AUROC and AUPR metrics.
However, they did not accurately estimate correction rates as
they struggled to achieve good NCE and ECE scores. The ex-
treme case was Entropy which had good classification metrics,
but its ECE was worse than CTC softmax.

Although CEMTran leveraged contexts, there was no signifi-
cant difference in the effectiveness of CEMMLP and CEMTran on
in-domain test sets. However, CEMTran outperformed CEMMLP

on CommonVoice in all aspects. This suggests that leveraging
contextual info through the attention mechanism may increase
the robustness of CEMTran to handle unseen domains.

Figure 2 illustrates that the CTC model was overconfident
in its softmax probabilities, even in unseen domains where it
was prone to high errors. Temp showed slight improvements to
CTC softmax. Entropy made underconfident scores for correct
words. Both CEM methods significantly reduced discrepancies
between predicted confidences and actual WCRs.

5.2. Results for Thai corpora

We studied the effectiveness of the proposed methods on Thai
datasets to show the robustness across different languages and
background conditions. Table 2 shows consistent improvements
of CEM for Thai and English words. We found CTC softmax
were excessively overconfident, and CEMTran was the best for
estimating error rates of out-of-domain utterances.

CEMTran had difficulty with rare English words in code-
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Table 1: The performance comparison for English test sets.

LibriSpeech test-clean/test-other CommonVoice
AUROC (↑) AUPR (↑) NCE (↑) ECE (↓) AUROC (↑) AUPR (↑) NCE (↑) ECE (↓)

CTC softmax 0.838/0.852 0.156/0.346 -0.433/-0.148 0.068/0.119 0.793 0.637 -0.463 0.294
temp. scaling [15] 0.859/0.866 0.181/0.365 -0.323/0.034 0.062/0.083 0.806 0.654 0.002 0.197
Entropy [31] 0.877/0.903 0.459/0.656 -4.274/-1.99 0.534/0.538 0.855 0.848 -0.450 0.394
CEMMLP 0.909/0.909 0.428/0.637 0.339/0.389 0.012/0.020 0.904 0.866 0.420 0.038
CEMTran 0.910/0.911 0.493/0.660 0.371/0.407 0.006/0.011 0.911 0.877 0.444 0.030

Table 2: The evaluation of confidence measures for Thai corpora

Podcast Mock Interview
AUROC (↑) AUPR (↑) NCE (↑) ECE (↓) AUROC (↑) AUPR (↑) NCE (↑) ECE (↓)

CTC softmax 0.805 0.326 -0.458 0.181 0.845 0.543 -0.207 0.210
temp. scaling [15] 0.815 0.339 -0.195 0.135 0.849 0.550 0.099 0.122
Entropy [31] 0.885 0.677 -1.722 0.466 0.899 0.789 -1.980 0.485
CEMMLP 0.904 0.701 0.348 0.053 0.884 0.778 0.300 0.027
CEMTran 0.903 0.698 0.360 0.046 0.896 0.783 0.390 0.024

0 .25 .5 .75 1
Expected confidences

0
.25

.5
.75

1

W
CR

0
.1
.2
.3
.4

PM
F

(a) CTC softmax

0 .25 .5 .75 1
Expected confidences

0
.25

.5
.75

1

W
CR

0
.1
.2
.3
.4

PM
F

(b) CEMTran

Figure 3: Calibration plots for English words found in code-
switching utterances presented in the Mock Interview subset.

switching utterances of the Mock Interview test set. These En-
glish words were considered hard as they accounted for only
0.7% in the CEM training set. However, CEMTran still substan-
tially outperformed other methods in terms of calibration er-
rors, as displayed in Figure 3. Specifically, the ECE for English
words of CTC Softmax, Temp, Entropy, CEMMLP, and CEMTran

were 0.507, 0.364, 0.208, 0.198, and 0.156, respectively. The
AUROC values for the each method were 0.870, 0.865, 0.910,
0.892, and 0.909, respectively.

5.3. Confidences as a trigger for human intervention

One possible use case of confidence estimates is for helping hu-
man transcribers transcribe voice recordings such as video lec-
tures or meetings. We might want to trigger a manual review
if the sentence-level confidence is below a certain threshold. A
simple method to estimate sentence-level confidence is to av-
erage the word-level confidence scores of the words within a
sentence [8, 38]. We used correctly predicted sentences as true
positives and showed the ROC curves in Figure 4. The sentence
confidence estimated by the CEM models perform well in filter-
ing out pristine transcriptions that do not require further fixes.

CEMTran exhibited the best performances for English test
sets, while CEMMLP showed superiority on Thai utterances.
We found unexpected declines in the performances of CEMTran

on Mock Interview, leaving CEMMLP as the clear winner for
sentence-level confidences.

5.4. Design choices

We justify our choice of frame-level aggregation (aggf ) by
comparing the performances of CEMTran on LibriSpeech’s test-
clean. Table 3 indicates that mean aggregation tends to produce
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Figure 4: ROCs of sentence screening capability

Table 3: CEMTran performances on LibriSpecch test sets for dif-
ferent frame-level aggregation and without blank tokens

aggf AUROC (↑) AUPR (↑) NCE (↑) ECE (↓)

max 0.911/0.912 0.475/0.659 0.350/0.394 0.015/0.026
mean 0.910/0.911 0.493/0.660 0.371/0.407 0.006/0.011
min 0.906/0.909 0.473/0.651 0.359/0.399 0.005/0.013

- blanks 0.900/0.904 0.468/0.641 0.349/0.390 0.007/0.006

better results. These observations also held for CTC softmax,
Temp, and CEMMLP. We also reported the effect of removing
blanks from the confidence estimation as they did no represent
any letters in the predictions. This resulted in some degradation.

6. Conclusion
This paper introduced using CEM for predicting confidences
of CTC ASR models. We presented a novel feature extraction
pipeline for CEM and demonstrated significant improvements
of CEM in NCE and ECE compared to using naive confidences
derived from CTC softmax. We proposed using Transformer as
CEM instead of MLP and shown that CEMTran was the preferred
choice as it outperformed other methods in most cases. Future
work includes extending CEM to handwriting recognition and
investigating its use with language modeling.
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