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Abstract

Contextual biasing (CB) is an effective approach for contex-
tualising hidden features of neural transducer ASR models to
improve rare word recognition. CB relies on relatively large
quantities of relevant human annotated natural speech during
training, limiting its effectiveness in low-resource scenarios. In
this work, we propose a novel approach that reduces the re-
liance on real speech by using synthesised audios for training
CB adapters. We introduce a projection module (PM) that trans-
forms encoder features of synthesised audios prior to CB train-
ing to better match real speech. We penalise PM with con-
sistency regularisation to encourage higher similarity between
features of real and synthesised speech. The proposed method
maintains the same performance on both named-entity and gen-
eral datasets while using half of the real speech data for CB
training. Furthermore, we show a 16% word error rate reduc-
tion when the full real-speech training dataset is extended with
synthetic utterances.

Index Terms: speech recognition, contextual biasing, person-
alised ASR

1. Introduction

Neural Transducer models, including Recurrent Neural Net-
work Transducer (RNN-T) and Conformer-Transducer (C-T),
have achieved state-of-the-art accuracy on a range of Auto-
matic Speech Recognition (ASR) tasks and as such have been
widely adopted [1, 2]. Neural transducer models are typically
trained to directly estimate textual units such as graphemes or
sub-words [3]. This simplifies the training process compared to
existing ‘hybrid’ ASR models as lexicons and alignments are
no longer required, but reduces the adaptability of the system.
Despite strong performance on many tasks, rare word recogni-
tion remains an open issue, with neural transducers often failing
to recognise words that were seen infrequently during training.
Rare word recognition is critical for a range of tasks, in-
cluding virtual assistants, where named entities such as con-
tact names, song titles and appliance names are often also rare
words. Recognition of rare words can be improved to a certain
degree using language models, either to directly bias posteriors
in the search (shallow-fusion) or to re-score n-best lists. These
approaches have limitations, however; shallow fusion interpola-
tion weights require careful tuning [4], and in the case of rescor-
ing methods the rare words might have already been pruned
from the candidate list making correction impossible [5].
Recent work proposed to improve rare word recognition by
directly adapting models in the latent space via contextual bias-
ing (CB) [6, 7, 8, 9, 10]. CB steers the predictions of transducer

*Work done during an internship at Amazon Alexa.

models towards a given list of entities from a given context by
first encoding these entities into a model-interpretable format
and then performing cross-attention between the encoded text
features and encoder outputs of the neural transducer. The en-
coder outputs are then biased by adding the output of the cross
attention. Training CB adapters relies on transcribed speech
recordings of utterances containing relevant entities, which are
often time consuming and expensive to obtain, while relevant
contextual entities can be retrieved from personal catalogues,
e.g. playlist names, favourite movies or saved addresses.

On the other hand, the use of synthesised audios for
training ASR models has gained attention as Text-to-Speech
(TTS) models become capable of synthesising high-fidelity au-
dio [11, 12, 13, 14, 15]. Despite real and synthesised audio be-
ing difficult to distinguish for human listeners [16], synthesised
audio is still sufficiently different in the model feature space
that models trained on such audio often fail to generalise well to
natural speech [4]. Recent work looks to solve this problem by
limiting the sample size of synthesised audios [17], adding con-
sistency regularisation [18, 19], performing multi-stage training
[20, 21], and separating normalisation statistics [16].

In this work, we propose a simple feature transformation
to effectively use synthesised audios for training CB adapters.
First, we introduce a projection module (PM) to reduce the mis-
match between encoded features of real and synthesised speech.
During training, the PM is added between the encoder and CB
adapter and is jointly trained with the CB adapter while the rest
of the network is frozen. As the PM is only applied to TTS
speech, it is not required for inference and so is discarded after
training. Second, we further penalise dissimilarities between
encoder features of real and synthesised speech by imposing
consistency regularisation to the PM. We present experimental
results for two alternatives: i.) gradient reversal (GR) [22] and
ii.) contrastive loss (CL) [23]. GR and CL only affect the PM
outputs and have no impact on other components.

Experimental results on in-house test sets show that our
proposed PM prevented the models from over-fitting to syn-
thesised audios to the extent that we were able to reduce the
amount of human speech required for training by 50%. By ex-
tending the full human speech corpus with utterances with syn-
thetic audio and transcripts we were able to increase word error
rate reductions on named entities by a further 16%.

2. Contextual Biasing RNN-T

A Contextual Biasing Transducer (CB-T) is as a neural trans-
ducer model that is able to bias audio encoder features towards
a provided list of words using a contextual biasing adapter [10].
CB-T therefore comprises four components: an audio encoder,
label predictor, joint network, and CB adapter.
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Figure 1: An overview of CB-T models with PM for an input
batch of one real and one synthesised utterance. The proposed
PM, CB adapter, and basic components of RNN-T models are
colour-coded green, yellow, and dark grey, respectively. Dark
grey components are frozen during CB-T training.

The CB adapter comprises two components: a catalogue
encoder and a biasing adaptor. Given a catalogue of words
or phrases, C = (c1,c2, ..., k), the catalogue encoder pro-
duces fixed-dimensional vector representations for each of the
variable-length entities in the catalogue:

¢§ = BiLSTM(Embedding(Tokenise(c;))), (1

where cf is the last output of a BILSTM encoder, and C® =
(ct,c5,...,c%) is a list of encoded entities. Given RNN-T en-
coder features h; at time ¢, the biasing adapter performs cross-
attention [24] between h; and C° at each time step as follows:

h;W4(C*WH*)T
Vdy
where W%, W* and W are projection layers. Finally, contex-

tualised features are the result of element-wise addition between
encoded features and biasing vectors, h; = h; 4 b;. The joint

b; = Softmax ( ) C°W", 2

network takes contextualised features, h;, and label predictor
features as inputs and produces the posterior distribution over
word-pieces. For readability we drop the time index ¢ from fu-
ture equations.

3. Methods

In this section we describe the proposed projection module and
the two evaluated methods of consistency regularisation.

3.1. Projection module

The purpose of the Projection Module (PM) is to transform en-
coder features generated from synthesised audio such that they
are as close as possible to those generated from real speech.

Given real audio R and synthesised audio S, we obtain the
corresponding encoder features hz and hs by feeding R and
S through the RNN-T encoder. Transformed encoded features,
z, are then obtained as follows:

{]’—PM(hS) 3)

hR7
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where Fpum denotes the PM function. z is then used as input
to the CB adapter and added to the biasing vectors before being
fed to the joint network (Fig. 1). The PM is trained jointly with
the CB adapter. The rest of the RNN-T network is initialised
using a pretrained model and frozen during training.

3.2. Consistency regularisation

Consistency regularisation penalises distinctiveness between
encoder features of real and synthesised audio. Consistency reg-
ularisation and RNN-T losses are optimised jointly in a multi-
task learning manner. In this work, dissimilarities are measured
on utterance-level by applying time-axis averaging on real and
synthesised audio encoder features. We explored two forms
of consistency regularisation: gradient reversal and contrastive
loss.

3.2.1. Gradient reversal

A domain discriminator is first added to the model with the task
of classifying encoder states as coming from either real or syn-
thetic audio. Gradient reversal (GR) then influences the PM to
make features of real and synthesised audio indistinguishable by
updating model weights in the direction that hinders the domain
discriminator [22]. The discriminator is trained using the binary
cross entropy loss, £p. Discriminator weights are updated as:

HDISC = HDISC - aaﬁD/aaDISC7 (4)

where « is the learning rate and Opisc are the weights of the
discriminator.

The PM is updated using gradients from RNN-T loss,
Lrnn-T, and scaled additive inverse of upstream gradients from
the discriminator, i.e.:

Opm = Opm — (OLrnT/O0pM — AOLD /O0pM),  (5)

where 6py are weights of the PM and A is the scaling factor
used to incorporate the reversed gradients.

3.2.2. Contrastive loss

Contrastive loss (CL) penalises dissimilarities between real and
synthesised audio features that share the same transcripts [23].

Given real audio examples R in a training batch, we use
the transcript of each of the real examples in R to synthesise
paired TTS audio S. We apply the contrastive loss to min-
imise the dissimilarities between R and S as shown in (6).
The positive samples are pairs of transformed encoded features
{(z%,25), ..., (25,25 )} for real data R and synthesised au-
dios S, of which transcripts are the same, where IV is the num-
ber of real examples. The negative samples are drawn from the
other real audio examples in the batch and their paired TTS au-
dio as shown in (7) and (8).

o~ exp(sim(Gr(zk), Gy (25)) /7)
Leont = = ; log denom, + denoms, ©
N
denom, = Z exp(sim(gr(z%),Qr(z%))/T) @)
k=1:ki
N
denom, = Y exp(sim(Gr(zRr), Gp(25))/7)  (8)
k=1k#i

where z%, and z5 are transformed encoded features of the "
real audio and its synthesised paired audio, averaged over time-
axis. The function G, and G, are projection layers dedicated



Table 1: Statistics for real-speech corpora as more utterances
are replaced by synthetic speech. (X,Y') represent statistics
for real and synthesised subsets within each data splits, respec-
tively.

m (%) datasize (hr)  #utterances (k)  #unique names (k)
100 (185, 0) (219, 0) (52,0)
70 (117, 36) (138, 78) (36, 15)
50 (86, 53) (101, 113) (26, 26)
30 (53,70) (63, 150) (15, 36)
10 (18, 89) (21, 190) (5, 46)
0 (0, 99) (0, 210) (0, 52)

for real and synthesised paired audio, respectively. We follow
[23, 25] and use cosine similarity as the distance function sim.

4. Experimental Setup
4.1. Training datasets

We used an in-house American English voice assistant dataset
with each utterance consisting of audio, transcript and a cat-
alogue of named entities. The training data is not associated
with identifying information. The real traffic data contains 219k
utterances (185 hours) and 52k unique named entities. We ran-
domly selected m% of the unique named entities and reserved
the transcripts containing the selected named entities for real
audios. The real audios paired with the transcripts containing
the remaining 100 — m% unique named entities were replaced
by synthesised audios. As a result, we had real and synthesised
corpora that did not have named entities in common. The details
for corpora with different values of m are depicted in Table 1.

In some experiments we used an extended corpus which in-
cludes all the available real audio (m = 100%) together with
20k synthetic utterances generated from new synthetic text:
such text was generated by randomly replacing named entities
in each of the existing real transcript with a new entity sampled
from a list of approximately 10M named entities from the same
domain. The contextual catalogues of such synthetic utterances
were created by randomly sampling N. examples from the same
list of named entities, where the catalogue size, IN., was sam-
pled from the distribution of catalogue lengths observed in real
traffic. We obtained 144 hours of synthesised audios after per-
forming one pass of the extension procedure. We repeated the
procedure four times to create extended corpora containing 144,
288, 432, and 578 hours. The four extended corpora had 235k,
460k, 675k, and 885k unique names, respectively.

To synthesise audio we fed pairs of transcriptions and ran-
domly selected speaker profiles, drawn from a pool of one thou-
sand speakers, to an in-house TTS model [26].!

4.2. Evaluation

We evaluated our models on real-speech test sets consisting of
general data (16k utterances) and data containing named entities
(NE, 19k utterances). Where utterances contained named enti-
ties, we ensured that their contextual catalogue included that
named entity.

Relative word error rate reduction (WERR) is reported for
the general test set. WERR is defined as WERR = (WERp —

I'Synthesised audios were generally shorter than real audios and not
every transcript was successfully synthesised by the TTS model, result-
ing in fewer hours of synthesised speech.
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WER 4)/WERpg, where B is the baseline, and A is the model
under evaluation. For NE, we report relative name-entity word
error rate reduction (NE-WERR). For both metrics, positive val-
ues indicate improvements. Unless explicitly stated, the base-
line used to compute the relative error rate reduction is the CB-
T trained with all real audio, representing the expected upper
bound.

4.3. Architecture details

The base RNN-T model had 150M parameters in total. The
audio encoder consisted of eight LSTM layers, with a time-
reduction factor of two applied after the first two layers. The
label predictor had two LSTM layers. We used 1280 hidden
units in each LSTM layer of the audio encoder and label pre-
dictor. The joint network was an element-wise addition, after
which a projection to the output layer of size 4001 was applied
(4000 word-pieces plus blank state). The catalogue encoder in
the CB adapter consisted of a bidirectional LSTM layer with
64 hidden units in each direction. The attention layer of the
CB adapter used one attention head and projected queries and
keys to 128 dimensions, with values projected to 1280 dimen-
sions to match the output of the audio encoder. The catalogue
size was set to a maximum of 300 during training to fit within
memory. For evaluation, we increased the maximum catalogue
size to 5000. We performed beam search with a beam size of
eight. Decoding results are from single-pass decoding; we did
not make use of an external language model.

In terms of PM architecture, we experimented with feed-
forward neural networks and transformer encoders. The feed-
forward PM (FPM) had two fully-connected layers with a ReLU
activation function applied to the output of the first layer. Trans-
former PM (TPM) was a single Transformer encoder with four
attention heads [27]. Inputs and outputs of the PM were 1280
dimensional vectors in both cases. The domain discrimina-
tor used for gradient reversal had one 128 dimensional feed-
forward layer with ReLU activation. Dropout at a rate of 0.5
was applied to this layer. The projection functions used for the
contrastive loss, G, and G,,, comprised two 1280-dimensional
linear layers with ReL U activation.

4.4. Training details

The weights of the audio encoder, label predictor, and joint net-
work were pretrained using 160k hours of real speech. The CB
adapter and PM were jointly trained from scratch in a second
training stage for 100k steps, while the rest of the network was
kept frozen. We used Adam optimiser [28] with a static learn-
ing rate of 8e-4. We used 16 GPUs to train the models. Unless
stated otherwise, we used m and 100 — m as weights for real
and synthesised datasets, i.e. each batch comprised m% of real
audio and 100 — m% of synthetic audio.

We used A = 0.1 for gradient reversal and 7 = 0.07 for
contrastive loss to weight the consistency regularisation during
training.

5. Experimental Results
5.1. Replacing real speech with synthetic speech

We begin by comparing CB-T with CB-T+TPM for different
proportions of real audio m in Figure 2. We trained CB-T and
CB-T+TPM models using two training sets for each value of m:
the m% real audios (real only), and both real and synthesised
audios (real and synt). As shown in Figure 2a, introducing syn-
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Figure 2: Performance on the real-speech corpora with vary-
ing amount of names reserved for real audios. For each split,
we replaced 100 — m% of training utterances with synthesised
audios. The “real only” models were trained using the m%
of real audios only. “pretrain” denotes the performance of the
baseline RNN-T model without CB.

thesised audios to the training data without using PM degraded
the NE-WERR when m > 30%. The proposed CB-T+TPM
is found to consistently outperform CB-T across every split in
terms of NE-WERR, illustrating how the projection module has
effectively reduced the mismatch introduced by the synthetic
audio, allowing us to leverage such audio when training contex-
tual adapters. Performance of the baseline is maintained with
m = 50%, and degrades by only 12% if all real audio is re-
placed by synthetic audio (m = 0). Introducing synthetic au-
dio without compensating for the mismatch was found to de-
grade performance on general data (Figure 2b), likely due to
poor quality embeddings caused by training the catalogue en-
coder with uncompensated synthetic audio resulting in spurious
matches in the attention layer. In contrast, error rates on general
data are largely stable after introducing TPM.

Table 2 presents the comparison between models for the
data split of m = 10%. The CB-T model (M2) is significantly

Table 2: Error rate reductions for the corpus where 90% of real
audio is replaced by synthetic speech. GR and CL stand for
gradient reversal and contrastive loss, respectively.

Model data size (hr) Named Entities General

(real, synt) (%NE-WERR) (%WERR)
MI1) CB-T (185, 0) 0.0 0.0
M2) CB-T (18,0) -79.6 0.2
M3) CB-T (18, 89) -34.3 -1.3
M4) CB-T + FPM (18, 89) -12.1 0.5
M5) CB-T + TPM (18, 89) -6.6 0.7
M6) CB-T + TPM + GR (18, 89) -3.1 0.7
M7) CB-T + TPM + CL (18, 89) -4.6 0.2

Table 3: Performance evaluation for different sizes of extended
corpora.

Model data size (hr)  Named Entities  General
(real, synt) (%NE-WERR)  (%WERR)
CB-T (185, 0) 0.0 0.0
CB-T (185, 144) -58.5 -2.0
CB-T + TPM (185, 144) 12.3 0.5
CB-T+TPM + GR (185, 144) 16.7 -0.5
CB-T+TPM +CL (185, 144) 15.5 0.0
CB-T+TPM + GR (185, 288) 16.1 -0.2
CB-T+TPM + GR (185, 432) 15.0 -0.2
CB-T+TPM +CL  (185,578) 16.1 0.0
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worse as it only had access to 10% of the real audio during train-
ing. We introduced synthesised audios to the CB-T model in
order to compensate the missing 90% of real utterances (M3).
Even though synthesised utterances improved the NE-WERR
on the named entity test set, we observed degradation on gen-
eral data. Adding PM to CB-T substantially improved the error
rates for both test sets. Although WERR on General of both
FPM and TPM were on par with M1, the more complex TPM
outperformed the FPM on named entities. Consistency regular-
isation further enhanced TPM. The models trained using gra-
dient reversal had only 3% degradation to M1 despite having
access to only 10% of the real data. The contrastive loss also
helped, but was not quite as effective as GR.

5.2. Extending the real corpus with synthetic audio

Finally, we investigated whether the proposed method could be
used to improve performance over the baseline CB-T trained
with the full real audio corpus by introducing extending corpora
of synthetic audio during training (Section 4.1). Equal weight-
ing was applied to the real and extended corpora.

As shown in Table 3, the best system is CB-T+TPM+GR.
We found that NE-WERR can be further improved, by over
16%, by adding 144 hours of synthetic audio. The approach has
limitations, however; increasing the size of the extended corpus
from 144 to 578 hours did not yield any further improvements.
We hypothesise two potential reasons behind this limitation: i.)
sentence and speaker diversity is relatively limited, with no fur-
ther variety in carrier phrases being introduced in the synthe-
sised transcripts and only 1000 speaker profiles being used to
generate the audio, and ii.) we may have reached the upper
bound of performance for the model architecture, where even
further real audio would not improve performance, however we
were unable to evaluate this hypothesis due to no further real
data being available.

6. Conclusions

In this work we have shown how a projection module can be
used to reduce the mismatch between real and synthetic audio,
allowing contextual biasing adapters to be trained with synthetic
audio. We demonstrated how the proposed approach can be
used to achieve on-par performance with a model trained using
the full real audio training corpora when 50% of the real au-
dio was replaced with synthesised speech. We also showed how
performance of the model can be further improved by extending
the training set with additional synthesised examples. Further-
more, our proposed method has no impact on the computational
cost of inference and is suitable for streaming use-cases.
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