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Abstract
The goal of this paper is to learn robust speaker representation

for bilingual speaking scenario. The majority of the world’s
population speak at least two languages; however, most speaker
recognition systems fail to recognise the same speaker when
speaking in different languages.

Popular speaker recognition evaluation sets do not consider
the bilingual scenario, making it difficult to analyse the effect of
bilingual speakers on speaker recognition performance. In this
paper, we publish a large-scale evaluation set named VoxCeleb1-B
derived from VoxCeleb that considers bilingual scenarios.

We introduce an effective disentanglement learning strategy
that combines adversarial and metric learning-based methods.
This approach addresses the bilingual situation by disentangling
language-related information from speaker representation while
ensuring stable speaker representation learning. Our language-
disentangled learning method only uses language pseudo-labels
without manual information.
Index Terms: speaker recognition, real conversation, bilingual
speaking, disentangled representation learning

1. Introduction
An estimated 60 to 75 percent of the world’s population speaks at
least two languages [1]. While somebody is speaking in a foreign
language, it has been observed that the person’s voice sounds
different from when speaking in their mother tongue [2]. With
recent trends in globalisation, it has become easier to encounter
multilingual scenarios. Therefore, the focus on multilingual speaker
recognition has become more important [3–7].

While the performance of speaker recognition systems
has improved significantly due to recent advances in deep
learning [8–15] and the availability of large-scale datasets [16,17],
the state-of-the-art systems fail easily under the language mismatch
condition. The popular speaker recognition evaluation sets do
not consider bilingual scenarios, making it difficult to analyse
their effect on speaker recognition performance. There are a few
evaluation datasets that consider bilingual scenarios; however,
they are collected from controlled environments like phone-call
platform [3] or contain only limited languages [6]. The recent
VoxCeleb Speaker Recognition Challenge (VoxSRC) [18] contains
some bilingual speakers; however, their evaluation datasets remain
private. Hence, to the best of our knowledge, there is no large-scale
public evaluation set that takes bilingual speakers into account.

To this end, we publish a large-scale bilingual evaluation set
derived from VoxCeleb1 [16], focusing on bilingual speaking
problems. We call this test protocol VoxCeleb1-B 1. To

†These authors contributed equally to this work.
1The official website’s url: https://mm.kaist.ac.kr/projects/voxceleb1-b/

increase the scale and the diversity compared to the VoxSRC
challenge test set [18], we expand the number of bilingual trials
and the number of languages, resulting in a total of 808,574 trials
and 15 languages. Moreover, for the first time, we release the
manually annotated language labels of VoxCeleb1. More details
of VoxCeleb1-B and the language labels are given in Section 2.

Previous literature finds that a speaker’s identity information
is intertwined with various factors including accent [19], gen-
der [20,21], age [21], nationality [21], emotion [22,23], and spoken
language [24]. Using the proposed evaluation protocol, we observe
that the existing speaker recognition models do not generalise well to
bilingual speakers. We suppose that the mismatched prosodic char-
acteristics from bilingual speakers’ different languages significantly
affect the performance of the speaker recognition models.

To resolve the language-dependent problem, traditional methods
on multilingual speaker recognition have mostly utilised combina-
tion of probabilistic linear discriminant analysis and scoring func-
tions based on a standard backbone system such as the i-vectors [5,
7, 25]. However, these methods do not ensure language-invariant
speaker representations. Other studies [15,26–33] have proposed
two types of disentangled representation learning methods, namely
adversarial learning-based method and metric learning-based
method, which isolate nuisance attributes from the speaker repre-
sentation. Adversarial learning-based method disturbs convergence
of non-speaker discriminator, while metric learning-based method
minimises distance or similarity between speaker-relevant and non-
speaker representations. For adversarial learning-based method,
some studies [15,26–28] utilise the gradient reversal layer (GRL).
Although GRL has shown performance improvement in disentangle-
ment of the target information, we find through our experiments that
it frequently causes unstable training and is sensitive to hyperparam-
eters. On the other hand, some studies [29,31–33] propose metric
learning-based methods to minimise correlation between speaker rep-
resentation and non-speaker representations. [29] utilises mean ab-
solute Pearson’s correlation (MAPC) minimisation and [31] uses co-
sine similarity (COS) minimisation. [32,33] employ mutual informa-
tion minimisation. However, since [29,32,33] perform domain adap-
tation for different domains, there is no guarantee that they will per-
form well in the goal of this work, namely intra-domain disentangled
representation learning. We evaluate the existing methods and our
method on the evaluation set which reflects real-world bilingual sce-
nario unlike [31] which conducts experiments on a simulated dataset.

In this work, we propose an effective disentangled rep-
resentation learning, which weakens the language-dependent
information that resides in the speaker representation. The
proposed learning strategy combines GRL and MAPC minimisation
objective, which overcomes unstable learning and effectively learns
language-disentangled speaker representation. The neural network
consists of a main speaker recognition model and a spoken language
recognition model. During training, language-disentangled learning
leverages language pseudo-labels extracted from a spoken language
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Table 1: Statistics of the VoxCeleb1 test sets, VoxSRC validation sets and VoxCeleb1-B. Pos.: # of positive trials; Neg.: # of negative trials;
cl.: Cleaned version; Cross-lingual: Whether the test set is constructed in consideration of bilingual scenario.

Test set VoxCeleb1 cl. VoxCeleb1-E cl. VoxCeleb1-H cl. VoxSRC 2020 Val VoxSRC 2021 Val VoxCeleb1-B
# of trials 37,611 579,818 550,894 263,486 60,000 808,574
(Pos. / Neg.) (18,802 / 18,809) (289,921 / 289,897) (275,488 / 275,406) (131,743 / 131,743) (29,969 / 30,031) (404,287 / 404,287)

Cross-lingual ✗ ✗ ✗ ✗ ✓ ✓
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(b) Speaker embedding training

Figure 1: Overview of the training strategy. The coloured parts
of the network are updated during each training procedure. Note
that the Gradient Reversal Layer (GRL) is only activated during
speaker embedding training procedure. xi: input mel-spectrogram;
zi: frame-level embeddings; ei

S: speaker embedding vector; ei
L:

language feature vector.

recognition model pre-trained on VoxLingua107 [34] dataset. To
the best of our knowledge, we are the first to perform intra-domain
disentangled representation learning using only pseudo-labels.

2. Bilingual speaker recognition test set

We publish a large-scale bilingual speaker recognition evaluation
protocol derived from VoxCeleb1 dataset [16], which is one of the
widespread benchmark evaluation datasets in the recent speaker
recognition field. Most of existing evaluation sets do not focus
on the bilingual scenarios. Our speaker recognition evaluation set
contains 808,574 trials in total. Half of the trials are intra-speaker
cross-lingual and the remaining trials are inter-speaker monolingual.

2.1. Obtaining language labels

To simulate the bilingual scenarios with VoxCeleb1 dataset, it is
necessary to have the language labels of the utterances in the test set.
We utilise language annotations of VoxCeleb1 dataset from VoxSRC
2021 [18] which are manually checked after obtaining language
pseudo-labels of the utterances by using a Spoken Language
Recognition (SLR) model pre-trained on VoxLingua107 [34]
dataset. VoxLingua107 dataset contains 6,628 hours of speech that
are divided into 107 languages.

Assuming that a single speaker speaks only one language in
a video, one audio sample is randomly sampled for each video.
15 languages including English, French, Hindi, German, Spanish,
Italian, Afrikaans, Portuguese, Dutch, Korean, Urdu, Swedish,
Russian, Chinese, and Arabic are annotated by annotators of
various nationalities. Out of 153,516 utterances in the VoxCeleb1
dataset, 883 utterances, whose language could not be recognised by
annotators, have been excluded from the proposed evaluation list.

2.2. VoxCeleb1-B Evaluation list

Speaker verification evaluation protocol consists of positive and
negative trials. Each trial involves an enrollment utterance and a test
utterance. The trial type is decided based on whether the enrollment
and the test utterances have the same speaker identity. To evaluate
the robustness of speaker recognition models in the bilingual scenar-
ios, we propose an evaluation protocol named VoxCeleb1-B, which
simulates language-mismatch scenarios with a large amount of
cross-lingual trials. Using the speaker and language annotations, we
generate 404,287 intra-speaker cross-lingual trials and inter-speaker
monolingual trials each. The number of speakers for each language
and the number of samples per speaker are limited to 1,000 and
15, respectively, to avoid bias towards more frequent languages.

Table 1 shows the statistics of existing evaluation lists derived
from VoxCeleb1, and the proposed VoxCeleb1-B. The three original
VoxCeleb1 test sets and the VoxSRC 2020 [35] validation set are
expected to contain very few cross-lingual positive trials, whereas the
VoxSRC 2021 [18] contains some cross-lingual trials. VoxCeleb1-B
is explicitly designed to contain a large number of cross-lingual trials.

3. Language-disentangled learning

In this section, we describe the proposed language-disentangled
representation learning strategy. Our training framework is inspired
by [15,36,37] and summarised in Figure 1. The network consists
of a speaker embedding network that includes a speaker feature
extractor and a speaker embedding layer, a speaker classifier, and
a language classifier. The speaker embedding network follows the
existing speaker models [38, 39] while the language classifier is
attached for the purpose of a language discriminator.

The speaker embedding network produces frame-level
embeddings zi from the input mel-spectrogram data xi ∈RT×F

(1 ≤ i ≤ N), where T , F and N are the number of frames,
frequency bins, and the size of mini-batch, respectively. To derive an
utterance-level vector eiS from the frame-level embeddings zi, we
adopt Attentive Pooling Layer (APL) which includes self-attentive
pooling (SAP) [40] or attentive statistics pooling (ASP) [41] as an
speaker embedding layer.

The speaker embedding vector eiS is passed as an input feature
to both the speaker classifier and the language classifier, which
consist of one and three fully-connected layers, respectively. We
obtain the language feature vector, eiL, from the output of the
second fully-connected layer in the language classifier. For the
language classifier, the GRL is placed at the front of the language
classifier and is activated in speaker embedding training step.

The training process of our framework alternates between two
phases for the data from the same mini-batch: (1) language dis-
criminator training, and (2) speaker embedding training. In the first
phase, we train the language discriminator to recognise the spoken
language from ei

S. In the second phase, the speaker recognition
network is trained to classify speakers, while intentionally trained
to poorly recognise spoken languages.
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3.1. Language discriminator training

In this step, we train the language classifier, while freezing the
speaker recognition network. This approach can be interpreted to
train the language recognition for the latest state of the speaker
representation vector eiS that has been extracted by the speaker
embedding layer. The objective function Llang of the language
classifier is a categorical cross-entropy loss. In Figure 1a, the parts
of the network coloured in blue are optimised by Llang.

3.2. Speaker embedding training

In this step, we train the speaker recognition network with
language-disentangled representation learning. The language
classifier’s parameters are not updated at this stage. The total loss
function to train the language-disentangled speaker recognition
model can be formulated as follows.

Ltotal=Lspk+Lde (1)

where Lspk is an objective function for the speaker recognition
and Lde is an objective function of the disentangled representation
learning. For Lspk, we can utilise objective functions such as
softmax loss, prototypical loss, and contrastive loss, which have
been employed in the previous works [38, 39]. For prototypical
loss and contrastive loss, we exclude the speaker classifier since
these losses are directly derived from the speaker embedding
vectors rather than speaker logits. For Lde, we can apply objective
functions from two types of learning methods, namely adversarial
learning-based method and metric learning-based method. In
this work, we select gradient reversal layer as an adversarial
learning-based method, and metric learning-based methods include
cosine similarity minimisation and mean absolute Pearson’s
correlation minimisation. The details of each method are as follows.
Gradient Reversal Layer (GRL). Gradient reversal layer inverts
the gradient value of target loss function to opposite sign for
disturbing the convergence of the target loss function. In our work,
the target loss function is Llang.
Cosine similarity (COS) minimisation. This method minimises
cosine similarity between speaker embedding vector ei

S and
language feature vector eiL.
Mean Absolute Pearson’s Correlation (MAPC) minimisation.
This method minimises mean absolute Pearson’s correlation [29]
between speaker embedding vector and language feature vector. In
our work, Lcorr can be formulated as follows.

Lcorr=
1

N

N∑

i=1

F∑

j=1

|Cov(eSi,j,eLi,j)|
σ(eSi,j)·σ(eLi,j)

(2)

where Cov(·) is the covariance and σ(·) is the standard deviation.
F is the dimensionality of the embedding vector ei.
Ours. We propose an effective disentangled representation learning
that consists of GRL and MAPC minimisation. The total loss
function Ltotal of our method can be formulated as follows.

Ltotal=Lspk+Lcorr+λLlang (3)

where λ is a weight value for summation. In Figure 1b, the parts
of the network coloured in yellow are optimised by Ltotal.

4. Experiments
4.1. Input representations and model architecture

For the input representation of the neural network, we use log-mel
spectrograms that are extracted with a hamming window, 25ms
window size and 10ms stride size.

We focus on demonstrating the effectiveness of the proposed
learning strategy and its compatibility with previous models.
Thus, we employ two existing variants [38, 39] of the 34-layer
residual network, and rename each variant as ResNet-S [38] and
ResNet-L [39]. ResNet-S uses the SAP [40] and the angular
prototypical loss, and ResNet-L uses the ASP [41] and the angular
prototypical loss combined with the softmax loss, which is in line
with the original papers. The output size of each classifier is equal
to the number of each task’s classes.

4.2. Disentangled representation learning method

We evaluate various disentangled representation learning strategies
in terms of separating irrelevant information from intra-domain
speaker representation rather than domain adaptation in cross-
domain. We perform extensive experiments on various disentangled
representation learning strategies including adversarial learning-
based method using the GRL, metric learning-based method using
COS minimisation or MAPC minimisation, and the proposed
method, which is the combination of GRL and MAPC minimisation.

4.3. Implementation details

Datasets. We use the development partition with 5,994 speakers
of the VoxCeleb2 [17] as the training dataset. In order to learn
language-disentangled representation, we use the language
pseudo-labels of VoxCeleb2 dataset extracted from an SLR model
pre-trained on VoxLingua107 dataset. For evaluation, we use the
three original test sets based on VoxCeleb1 [16], the VoxSRC
validation sets [18, 35] and VoxCeleb1-B, which is the proposed
large-scale bilingual speaking evaluation set.

Training. Our implementation is based on the PyTorch frame-
work [42]. We use the Adam Optimizer [43] with initial learning rate
of 0.001 decreasing by 3% every epoch. All experiments are per-
formed on a single NVIDIA A5000 GPU with 24GB memory. We
use the batch size of 500 and 300 for ResNet-S and ResNet-L, respec-
tively. The training takes around 3 days. The λ value is set to 0.5.

4.4. Evaluation protocol

We report Equal Error Rate (EER) where the False Rejection Rate
(FRR) and the False Alarm Rate (FAR) are equal, and minimum
Detection Cost Function (minDCF) [44] which is a weighted sum
of FRR and FAR. For each trial, we sample each utterance into ten
4-second segments and compute similarities between all possible
combinations of segment pairs. We use the mean of the similarities
as a score of the trial. This evaluation protocol is in line with that
from [15,17,37,38].

5. Results
The experimental results are summarised in Table 2. Specifically,
Table 2a reports the results on the test sets that mainly consider
bilingual scenario, while Table 2b contains the results on existing
test sets that do not take the bilingual speakers into account during
their construction phases. We train all models 3 times with different
random seeds, and report the mean and the standard deviation.

Bilingual scenario in speaker recognition. As shown in Table 2a,
most of the models show poor performance on the VoxSRC 2021
validation set and VoxCeleb1-B. In particular, all baselines show the
lowest performance on VoxCeleb1-B which is composed entirely
of bilingual trials. This implies that bilingual scenario is one of the
most demanding challenges in the speaker recognition field.

Intra-domain disentangled representation learning. When com-
pared to the baseline of ResNet-L, the use of GRL shows notable
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Table 2: Equal Error Rates (EER) and minimum Detection Cost Function (minDCF) on (a) VoxSRC 2021 validation set, VoxCeleb1-B, (b)
VoxCeleb1 test sets, and VoxSRC 2020 validation set. Accuracy of Spoken Language Recognition (SLR Acc.) is computed on VoxCeleb1-B.
Lower SLR means less language information. All experiments except for spoken language recognition are repeated three times, and we report
the mean and the standard deviation. GRL: Gradient reversal layer; COS min.: Cosine similarity minimisation; MAPC min.: Mean absolute
Pearson’s correlation minimisation; Ours: Combination of GRL and MAPC minimisation.

Model VoxSRC 2021 Val VoxCeleb1-B

EER (%) minDCF EER (%) minDCF SLR Acc. (%)
ResNet-S [38] 9.22 ± 0.15 0.503 ± 0.007 9.69 ± 0.14 0.617 ± 0.007 87.2

+ GRL 10.27 ± 0.88 0.541 ± 0.036 10.39 ± 1.24 0.598 ± 0.055 87.2
+ COS min. 9.33 ± 0.18 0.505 ± 0.002 10.21 ± 0.22 0.614 ± 0.012 87.0
+ MAPC min. 8.85 ± 0.12 0.486 ± 0.005 9.85 ± 0.15 0.594 ± 0.011 86.8
Ours 8.35 ± 0.05 0.461 ± 0.002 8.25 ± 0.06 0.506 ± 0.002 82.9

ResNet-L [39] 5.16 ± 0.08 0.308 ± 0.010 5.96 ± 0.23 0.397 ± 0.016 88.3
+ GRL 4.53 ± 0.25 0.263 ± 0.008 3.98 ± 0.27 0.268 ± 0.020 72.1
+ COS min. 5.21 ± 0.18 0.317 ± 0.015 5.99 ± 0.35 0.423 ± 0.016 88.8
+ MAPC min. 5.23 ± 0.01 0.311 ± 0.009 5.93 ± 0.19 0.411 ± 0.018 88.2
Ours 4.22 ± 0.03 0.246 ± 0.006 3.69 ± 0.12 0.254 ± 0.010 80.1

(a) Results on VoxSRC 2021 validation set and VoxCeleb1-B.

Model VoxCeleb1 cl. VoxCeleb1-E cl. VoxCeleb1-H cl. VoxSRC 2020 Val

EER (%) minDCF EER (%) minDCF EER (%) minDCF EER (%) minDCF
ResNet-S 2.24 ± 0.13 0.174 ± 0.005 2.43 ± 0.04 0.175 ± 0.003 4.74 ± 0.07 0.299 ± 0.005 6.91 ± 0.07 0.393 ± 0.004

+ GRL 2.98 ± 0.14 0.210 ± 0.012 3.12 ± 0.19 0.222 ± 0.013 5.72 ± 0.37 0.351 ± 0.020 8.07 ± 0.47 0.457 ± 0.025
+ COS min. 2.13 ± 0.08 0.164 ± 0.006 2.45 ± 0.06 0.178 ± 0.004 4.78 ± 0.12 0.303 ± 0.006 6.83 ± 0.06 0.388 ± 0.004
+ MAPC min. 2.16 ± 0.07 0.157 ± 0.003 2.33 ± 0.01 0.166 ± 0.001 4.48 ± 0.02 0.284 ± 0.003 6.61 ± 0.04 0.373 ± 0.003
Ours 2.15 ± 0.01 0.172 ± 0.001 2.42 ± 0.01 0.171 ± 0.000 4.49 ± 0.02 0.284 ± 0.001 6.54 ± 0.02 0.378 ± 0.001

ResNet-L 1.17 ± 0.00 0.083 ± 0.003 1.30 ± 0.01 0.091 ± 0.001 2.58 ± 0.02 0.164 ± 0.001 4.06 ± 0.02 0.231 ± 0.005
+ GRL 1.22 ± 0.04 0.088 ± 0.009 1.34 ± 0.04 0.096 ± 0.002 2.58 ± 0.02 0.166 ± 0.001 4.13 ± 0.04 0.230 ± 0.003
+ COS min. 1.11 ± 0.01 0.084± 0.007 1.25 ± 0.03 0.091 ± 0.004 2.52 ± 0.02 0.164 ± 0.002 3.99 ± 0.03 0.228 ± 0.002
+ MAPC min. 1.10 ± 0.02 0.079 ± 0.001 1.24 ± 0.02 0.088 ± 0.002 2.48 ± 0.04 0.160 ± 0.002 3.99 ± 0.04 0.224 ± 0.001
Ours 0.99 ± 0.05 0.079 ± 0.004 1.25 ± 0.01 0.088 ± 0.000 2.42 ± 0.04 0.154 ± 0.003 3.91 ± 0.06 0.220 ± 0.001

(b) Results on cleaned version of VoxCeleb1 test sets and VoxSRC 2020 validation set.

performance improvements of 33% and 12% in VoxCeleb1-B and
VoxSRC2021 validation set, respectively, while the performance
degrades on the other evaluation sets. Furthermore, ResNet-S
with GRL exhibits the lowest performance and the highest
standard deviation on every evaluation set including VoxCeleb1-B.
This highlights the drawback of GRL, which tends to induce
unstable training despite its effectiveness in removing the language
information from the speaker representation.

We observe out that the metric learning-based methods, COS
and MAPC minimisation, outperform the baselines on VoxCeleb1
test sets and VoxSRC 2020 validation set. However, we observe
no performance improvement on VoxCeleb1-B. This suggests that
the disentangled representation learning method which utilises
metric learning performs a role of regularisation, but fails to
isolate the language information from the speaker representation.
As a result, we verify that existing disentangled representation
learning strategies applied to cross-domain tasks do not guarantee
generalisation to intra-domain tasks such as bilingual scenarios.

The proposed learning method on ResNet-L outperforms the
baselines and all existing methods on most of evaluation sets except
VoxCeleb1-E test set. In the case of ResNet-S, our method shows
the best performance on VoxSRC validation sets and VoxCeleb1-B
while remaining effective on the other evaluation sets. Especially,
ResNet-S and ResNet-L exhibit significant performance improve-
ments by 15% and 38% on VoxCeleb1-B, respectively. This demon-
strates that the proposed learning strategy overcomes the limitations
of existing disentangled representation learning methods and facil-
itates robust language-disentangled speaker representation learning.
The use of pseudo-labels. Training of all experiments are
performed with language pseudo-labels of VoxCeleb2. Nonetheless,
the proposed learning strategy works successfully, showing
significant performance improvements in bilingual scenarios. This

indicates that it can be cost-effective to use pseudo-labels of specific
factor in speaker recognition, which can be extended to other factors
of variation that must be disentangled from speaker embeddings.
Language-disentangled speaker representation. To verify
whether the language information is separated from the speaker
representation, we evaluate a spoken language recognition model
trained from scratch with the speaker embedding vector extracted
from each model as input data. The structure of the spoken language
recognition model is the same as the language classifier described
in Section 3. As shown in Table 2a (SLR Acc.), our method shows
lower spoken language recognition performance than the baselines of
two models. This highlights that the proposed method successfully
removes the language information from the speaker representation.

6. Conclusion
We have developed strategies to train speaker embeddings that are
robust to bilingual speaking scenarios, and proposed an evaluation
protocol that takes bilingual speakers into account. Our large-scale
evaluation protocol is designed to analyse speaker recognition per-
formance under bilingual scenarios, and we make this evaluation
set publicly available. We also propose a new learning strategy to
resolve the bilingual problem. Our learning strategy disentangles lan-
guage information from the speaker representation in order to make
the embeddings robust to cross-lingual trials. Our proposed learn-
ing strategy shows significant performance improvements under
bilingual scenarios, while remaining effective on existing test sets.
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