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Abstract 

This study investigates the task-dependence of standard cepstral 

peak prominence (CPP) computation methods, and the 

advantages conferred by an open-source method of excluding 

unvoiced regions in CPP computation. We use Praat and a 

public dataset (Perceptual Voice Qualities Database, consisting 

of 295 speakers) to assess how well a voice-only CPP algorithm 

identifies voice disorders, identifies perceived dysphonia, and 

correlates with dysphonia severity. Results indicate that, 

compared to standard CPP computation, voice-only CPP is (1) 

less affected by unvoiced regions in the speech signal and (2) 

better reflects clinical outcomes (i.e., voice disorder diagnosis 

and dysphonia severity) for data sets that contain varying 

speech tasks. We expect voice-only CPP to be particularly 

useful for assessing speech that contains unknown or 

heterogeneous utterance types, as well as for speakers whose 

voice signal is affected by involvement of other speech 

subsystems (e.g., articulatory impairment). 

 

Index Terms: voice, cepstral peak prominence, dysphonia 

1. Introduction 

Cepstral peak prominence (CPP) is an objective measure of 

voice quality that is widely used for both clinical and research 

applications. CPP has proven to be a sensitive metric for voice 

disorder detection that strongly correlates with perceived 

dysphonia severity [1]. In contrast to traditional acoustic 

measures of phonatory perturbation (e.g., jitter and shimmer) 

CPP can be calculated from connected speech and is reliable for 

speakers across the dysphonia severity range, including those 

with severe dysphonia for whom fundamental frequency cannot 

be directly computed [2].  

 

Increasingly, research into clinical use of CPP has found that it 

is an accurate indicator of voice disorder and dysphonia severity 

in many contexts, including across languages, voice disorder 

diagnoses, speaker ages, and speaking tasks [3]–[9]. 

Unfortunately, the calculation of CPP is sensitive to many 

factors that are not directly related to voice production. In 

particular, choice of analysis program, specific parameter 

settings, and speech task can all substantially alter CPP values. 

Clinical measures of CPP typically divide a signal into many 

short time segments (“frames”) and then average the CPP in 

each frame to produce a single mean CPP measure for an 

utterance. Therefore, utterances that vary in their proportion of 

silent or unvoiced frames (which have low CPP compared to 

voiced frames) can have widely varying mean CPPs even when 

the phonatory properties are essentially similar. As a result, 

normative CPP values fall in substantially different ranges for 

different speaking tasks. Most notably, CPP values for 

continuous speech are typically lower than CPP values for 

sustained vowels, due to the presence of silent and unvoiced 

frames. 

 

Voice analysis is used in many different research and clinical 

contexts, often with widely varying speech stimuli. In a clinical 

voice evaluation, standard speech tasks may involve sustained 

vowels, CAPE-V sentences, or any of several reading texts 

[10]–[12]. Other data sets may include more naturalistic speech 

in the form of open-ended prompts, conversations, or entirely 

unprompted speech collected in daily life. As discussed above, 

these different speech tasks are likely to yield different CPP 

values depending on their phonetic content. This variety limits 

the generalization of findings across studies and underscores 

the need for more robust CPP metrics that can be used across a 

wide variety of speech tasks.  

 

The sensitivity of CPP to unvoiced frames also may limit its 

utility for measuring dysphonia in individuals with concomitant 

motor speech impairments [2], which are associated with an 

increase in the number of silent pauses and devoicing errors 

[13], [14]. These errors increase the proportion of unvoiced 

speech and lower CPP values.  Also, alterations in articulation 

rate unevenly affect different speech sounds, with vowels 

lengthening more than consonants when speech rate increases 

[15].  

 

One potential solution to this problem is a CPP computation 

that excludes unvoiced frames. We refer to this modified CPP 

as the voice-only CPP, or vCPP. In this project, we use a 

publicly available dataset of speakers with and without voice 

disorders, accompanied by speech-language pathologists’ 

(SLP) ratings of voice quality. We also use Praat, a freely-

available speech analysis program, and a custom Praat script to 

compute the voice-only CPP using voice activity detection. 

This script is available at github.com/murtono/Praat-voice-
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only-CPP. We apply the V3 framework [16] to test the 

analytical and clinical validity of voice-only CPP. To that end, 

we address four research questions:  

Analytical validity  

1. Are vCPP values more robust than standard CPP 

across a variety of tasks?  

Clinical validity  

2. What is the accuracy of vCPP in identifying speakers 

with diagnosed voice disorders? 

3. What is the accuracy of vCPP in identifying speakers 

with perceptually dysphonic voices? 

4. What is the strength of the correlation between vCPP 

values and perceived dysphonia severity?  

2. Methods 

The Perceptual Voice Qualities Database (PVQD) consists of 

recordings from 295 speakers [17]. This data set is publicly 

available at DOI: 10.17632/9dz247gnyb.3. Of those speakers, 

186 have a diagnosed voice disorder, and 89 are healthy 

controls, for a total of 275 participants. The remaining 20 have 

no diagnosis specified and are excluded from the subsequent 

analyses. Each recording session includes sustained vowels (/a/ 

and /i/; this project only used the /a/ vowel) and the six CAPE-

V sentences [10]. For each session, three trained listeners 

provided CAPE-V [10] and GRBAS [18] ratings. Each listener 

rated each session twice so that reliability measures could be 

computed. A complete description of the methods and 

reliability statistics for this data set can be found in [17]. 

 

To compute standard CPP, each recording was analyzed in 

Praat (Version 6.2.14 retrieved at http://www.praat.org/) 

following the procedure described in [2]. In this method, 

recordings were high-pass filtered above 34 Hz using a stop 

Hann band, the PowerCepstrogram was computed, and the CPP 

(called “CPPS” in Praat) was extracted from the 

PowerCepstrogram. The Praat script with details for this 

procedure is available at github.com/murtono/Praat-voice-

only-CPP. To compute voice-only CPP, recordings were again 

analyzed in Praat using a modification of the standard CPP 

procedure. First, each recording was divided into voiced and 

unvoiced regions using the “To TextGrid (voice activity)” Praat 

command. Each voiced region was extracted separately and the 

standard CPP was computed according to the procedure 

described above. The voice-only CPP was reported as the time-

weighted average of the CPP of each voiced region. The Praat 

script used to carry out this process is included in the appendix. 

 

Our first goal was to assess how much standard and voice-only 

CPP values vary with tasks of different types. Intuitively, there 

should be no difference between the CPP procedures when 

speech is completely voiced since there are no unvoiced regions 

to remove. Results from the two processes should diverge for 

stimuli with greater degrees of unvoiced time. To address this 

question, we compared standard and voice-only CPP for (1) 

sustained vowels, (2) the fully-voiced CAPE-V sentence (“We 

were away a year ago”), and (3) the voiceless-stop-heavy 

CAPE-V sentence (“Peter will keep at the peak”). The Pearson 

correlation coefficient between standard and voice-only CPP 

was computed for each of these tasks.  

 

To address Question 2, we compared speakers with a diagnosed 

voice disorder against speakers with no voice disorder. 

Accuracy was evaluated using the area under the curve (AUC) 

for the receiver operating characteristic (ROC) curve. An AUC 

closer to 1 indicates better classification accuracy, and an AUC 

of 0.5 indicates chance performance. Within that range, an 

AUC of .7 to .8 is considered “adequate”, and an AUC of .8 to 

.9 is considered “excellent” [19]. In this analysis, AUCs were 

computed for six conditions: 

1. Classification of vowels based on standard CPP 

2. Classification of vowels based on voice-only CPP 

3. Classification of CAPE-V sentences based on 

standard CPP 

4. Classification of CAPE-V sentences based on voice-

only CPP 

5. Classification of any task based on standard CPP  

6. Classification of any task based on voice-only CPP  

 

In Conditions 5 and 6, all the CAPE-V sentences and vowels 

were combined into a single dataset. These conditions were 

used to assess classification accuracy of a single CPP threshold 

that could be applied to any task, which is useful if the speaking 

task is unspecified or varies across stimuli being evaluated. 

 

To address Question 3, we used the “Grade” section of the 

GRBAS perceptual ratings to group speakers into perceptually 

non-dysphonic (“normal” grade) or dysphonic (“mild”, 

“moderate”, or “severe” grade). Classification accuracy for this 

grouping was assessed using AUCs for the same six conditions 

described in Question 2. 

 

To address Question 4, we used the MATLAB fitlm function to 

compute the linear relationship between (1) standard CPP and 

perceived dysphonia severity and (2) vCPP and perceived 

dysphonia severity. This analysis was done separately for the 

sustained vowel task, the CAPE-V sentences, and the sustained 

vowels and sentences combined. 

3. Results 

3.1. Question 1 

 

 
Figure 1: Best-fit regression lines and 95% confidence 

intervals (shaded) for relationships between standard CPP (x-

axis) and voice-only CPP (y-axis). Data is shown for vowels 

(black, solid line), the fully-voiced CAPE-V sentence (purple, 

dashed line) and the voiceless-stop CAPE-V sentence (green, 

dotted line). 

 

Figure 1 shows best-fit regression lines and 95% confidence 

intervals for relationships between standard CPP and voice- 
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only CPP. These relationships are shown for the sustained /a/ 

vowel, the fully-voiced CAPE-V sentence, and the voiceless-

stop CAPE-V sentence separately. Pearson’s correlation 

coefficient (r) was high for each relationship (p < 0.05). 

Additionally, the differences between all three pairs of 

correlation coefficients were significant using the R cocor 

package [20].  

 
3.2. Questions 2 and 3 

 

Table 1 summarizes the ROC AUCs and p-values used to assess 

Questions 2 and 3. For Question 2, classification is based on 

whether a speaker has a diagnosed voice disorder; for Question 

3, classification is based on speakers’ scores in the “Grade” 

section of the GRBAS. AUCs are presented for each of the six 

conditions described in the Methods section. Delong’s test [21], 

as implemented in the R pROC package, was used to assess the 

significance of the difference in AUC between CPP and vCPP 

classification. The Bonferroni correction was applied to control 

for multiple comparisons. 

 

Table 1: ROC AUCs for classification accuracy based on 

standard and voice-only CPP in sustained vowels, CAPE-V 

sentences, and all tasks combined. P-values for the difference 

between the classification accuracy of standard and voice-

only CPP for each group are also presented. * indicates 

comparisons with p < 0.0083 (i.e., 0.05/6 after Bonferroni 

correction). 

 

 
CPP 

AUC 
vCPP 

AUC 
p 

Voice 

disorder 

diagnosis 

(Question 2) 

Vowels 0.710 0.699 0.012 

Sentences 0.747 0.767 0.049 

All tasks 0.718 0.752 0.002* 

Perceived 

dysphonia 

(Question 3) 

Vowels 0.823 0.811 0.015 
Sentences 0.763 0.811 0.001* 
All tasks 0.744 0.807 0.001* 

 

 

 

3.3. Question 4 

 

Figure 2 shows best-fit regression lines and 95% confidence 

intervals for relationships between CPP (standard or voice-

only) and perceived dysphonia severity. These relationships are 

shown based on data sets from the CAPE-V sentences (left) or 

from the full data set of CAPE-V sentences and sustained /a/ 

vowels (right). Pearson’s correlation coefficient (r) was high for 

each relationship (p < 0.05). The differences between pairs of 

correlation coefficients were significant for tasks including 

continuous speech tasks but not for the sustained vowel 

condition. This finding indicates that perceived dysphonia 

severity correlated better with voice-only CPP than with 

standard CPP. Table 2 reports correlation coefficients and p-

values for each task condition.  

 

Table 2: Pearson correlation coefficients for the relationships 

between perceived dysphonia severity and standard or voice-

only CPP for vowels, CAPE-V sentences, and all tasks 

combined. P-values for the differences between standard and 

voice-only CPP are also reported. * indicates p < 0.05. 

 

 Standard 

CPP r 

Voice-only 

CPP r 

p 

Vowels -0.72 -0.71 0.11 

Sentences -0.65 -0.75 < 0.001* 

All tasks -0.60 -0.74 < 0.001* 

4. Discussion 

This paper represents progress toward a novel method of 

computing CPP for voice analysis. Compared to traditional CPP 

computation, voice-only CPP is less affected by unvoiced 

content in the speech signal. In this study, we evaluated voice-

only CPP in the context of speech with varying phoneme 

characteristics, including varying degrees of voiceless speech. 

However, we expect these results to extend to speech that varies 

in voicing content for other reasons, including alterations to 

speech rate and pausing. Our results address analytical and 

clinical validation of voice-only CPP following the V3 

framework [16]. 

 

Figure 2: Best-fit regression lines and 95% confidence intervals (shaded) for relationships between CPP (x-axis) and perceived 

dysphonia severity (y-axis). Data is shown for vowels (left), the fully-voiced CAPE-V sentence (center) and the voiceless-stop CAPE-V 

sentence (right). Solid purple lines show standard CPP and dashed green lines show voice-only CPP. 
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Analytical validation (Question 1) showed that voice-only CPP 

is less affected by unvoiced content in the speech signal. For 

sustained vowels, the very high correlation coefficient (r ≈ 

0.99) indicated that standard and voice-only CPP produce 

essentially equivalent results when there are no unvoiced 

regions to remove. Correlation coefficients were lower for tasks 

that were increasingly distinct from the sustained vowel task. 

Correlation coefficients between standard and voice-only CPP 

were slightly lower for the fully-voiced CAPE-V sentence (r ≈ 

0.96) compared to the sustained vowels, and lower again for the 

voiceless-stop-heavy CAPE-V sentence (r ≈ 0.91). Overall, the 

relationship between standard and voice-only CPP is more 

vowel-like for continuous speech that is more fully voiced. This 

finding suggests that standard CPP values reflect the stimulus 

as well as the speaker’s phonation, and that voice-only CPP 

computation is more robust to variation in tasks.  

 

To address clinical validation, we asked how standard and 

voice-only CPP compare in identifying speakers with voice 

diagnoses (Question 2), identifying speakers with perceived 

dysphonia (Question 3), and in correlating with continuous 

judgments of perceived severity (Question 4).  

 
Results for Question 2 indicated that standard and voice-only 

CPP had comparable accuracy in identifying speakers with 

diagnosed voice disorders within a single task type. In other 

words, with data based only on sustained /a/ vowels, or only on 

CAPE-V sentences, there was no difference in classification 

accuracy between the two CPP computation methods. 

However, when data from sustained vowels and CAPE-V 

sentences were combined, classification accuracy was higher 

when voice-only CPP was used compared to standard CPP. 

This finding comports with the intuition that voice-only CPP 

should provide a greater marginal benefit over standard CPP 

when data sets are more varied. Within a single task type, the 

range in CPP values is small enough that the added benefit of 

voice detection is relatively low. When task types are 

combined, variation in voice content creates enough variation 

in CPP values that voice detection is useful.  
 
Question 3 concerned the ability of standard vs. voice-only CPP 

to identify speakers with perceptually dysphonic voices. This 

group overlaps, but is distinct from, the group of speakers with 

diagnosed voice disorders. Some speakers with mild or post-

treatment voice disorders might have perceptually “normal” 

voices, and some speakers without a formal diagnosis might 

have undiagnosed voice disorders or temporary dysphonia for 

unrelated reasons (e.g., temporary illness or recent fatiguing 

voice use). For this classification, there was no difference in 

accuracy between standard and voice-only CPP for sustained 

vowels, but voice-only CPP was more accurate than standard 

CPP when continuous speech data was included. Both the 

CAPE-V-sentence-only conditions and the combination of 

CAPE-V sentences and sustained vowels showed increased 

classification accuracy with voice-only CPP. 

 

Question 4 investigated the correlations between perceived 

severity (on a continuous 0-100 scale) and standard or voice-

only CPP. Results indicated that this correlation was higher for 

voice-only CPP than for standard CPP for data that included 

continuous speech tasks. There was no difference between the 

correlation coefficients for the two CPP computation methods 

when sustained vowels were analyzed alone. Overall, these 

results suggest that the voice-only CPP algorithm presented 

here performs comparably to standard CPP for homogeneous 

data sets, especially those with fully-voiced speech stimuli, but 

that vCPP has several significant advantages over standard CPP 

for heterogenous data sets.  

 

Note that the continuous speech tasks in this data set were all 

single sentences and generally did not contain many breaths or 

pauses. Any variation in voice percentage comes mainly from 

phoneme-level variation in the prevalence of unvoiced 

segments. We expect that the added benefit of voice-only CPP 

would be greater in data sets that include longer continuous 

speech utterances where breathing and pausing are more 

prevalent. Additionally, inter-speaker variation in pause rate 

and duration is expected to create even more variability in 

standard CPP values and further increase the benefit of voice 

detection. 
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