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Abstract

A spoken dialogue system is required to continuously listen to
a human user for smooth conversation. We propose a method
that simultaneously performs response generation and listener
response timing estimation. Our proposed method estimates lis-
tener response timing by adding pseudo-samples where listener
response should be irrelevant, which allows using text-only con-
versation dataset without audio information. Furthermore, our
proposed method can control substantialness of responses by
user-specified parameter integrated with the Dynamic-Prompt-
Tune method, which uses prompt token embedding dynamically
generated from the parameter. Our automatic and manual evalu-
ation showed that the proposed method can generate responses
with more natural timing and more in line with the response
substantialness parameter compared to the baseline model.

Index Terms: spoken dialogue system, listening response, re-
sponse timing estimation, response substantialness control

1. Introduction

In human conversation, listeners continuously engage in lis-
tening responses. Such responses can make communication
smoother, and therefore, a spoken dialogue system also need
to continuously provide listening responses to users. To achieve
this, the system needs to estimate the timing and content of re-
sponses. However, these are influenced by non-linguistic in-
formation, thus, we need a mechanism that can change the fre-
quency and content of responses by receiving non-linguistic in-
formation. We aim to construct a spoken dialogue system that
estimates when a listener should respond and generates a vari-
ety of responses along with a user specified response substan-
tialness parameter.

Several methods have been proposed for estimating the tim-
ing of possible listener response, including methods based on
acoustic features [1], and methods based on the parts of speech
at the end of utterances and the duration of the utterance [2].
Similarly, estimation of turn-taking timing is a related research
topic to the estimation of listener response timing. Many meth-
ods have been proposed for estimating the timing of turn-taking
using acoustic and linguistic features [3, 4]. Ekstedt et al. pro-
posed TurnGPT, a GPT-2 [5] based speaker turn-taking predic-
tion model, which takes the transcribed text of the preceding
utterance as input and estimates the speaker turn-taking proba-
bility immediately following the input [6].

Regarding natural language generation, large-scale models,
such as GPT-3 [7], use Prompt Design, which solves a task with-
out re-training by providing an additional string called a Prompt
that describes the task description and other information. How-
ever, the performance of Prompt Design tends to be inferior to
that of Fine-Tune. Prompt-Tune [8] concatenate a trainable vec-
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tor, called Soft-Prompt, with an embedded representation of the
input text, optimizing only the Soft-Prompt vector. Prompt-
Tune reduces the training cost by decreasing training parame-
ters by this Soft-Prompt architecture, which can prevent over-
fittings compared to Fine-Tune.

Because Soft-Prompt is a static embedded representation
specialized for a single task, it is difficult to represent every-
thing in a single static prompt token embedding when complex
and varied input statements must be supported, such as dia-
logue tasks. Several methods have been proposed to dynami-
cally change the prompt token embedding for each input, such
as a method to handle multi-modal information by inputting im-
ages to the prompt token (called Multi-modal Prompt-Tune in
this paper) [9] and Control-Prefixes [10] that control generated
text in a specific direction using a prompt token embedding dy-
namically generated from attribute information and other data.

We propose a method that simultaneously performs re-
sponse generation and listener response timing estimation,
which is different from TurnGPT in that it estimates only the
speaker turnover probability. While TurnGPT learns speaker
turn-taking probabilities from actual corpus data, our proposed
method estimates listener response timing by adding pseudo-
samples where listener response is impossible.

Regarding the substantialness-specified response genera-
tion, we propose to use three levels of parameter to control the
response substantialness as auxiliary information for response
generation. In this paper, we mean substantialness as how much
an expression includes concrete contents, e.g. very short an-
swers like "yeah” are less substantial but phrasal answers could
be more substantial. In order to learn the response substan-
tialness with the parameter, Prompt-Tune is performed using
a prompt token embedding dynamically generated from the re-
sponse substantialness parameter. This enables efficient learn-
ing even with small amounts of data.

Because the production of high-quality transcribed text is
very costly, spoken conversation data is less available and its
amount is insufficient than text data. To augment such an in-
sufficient dataset, we generate negative response timings by
randomly cutting the speaker’s utterance in the middle, adding
pseudo-samples that are impossible for the listener to respond.
This augmentation comes from our observation that it is nor-
mally inappropriate to make a response in the middle of an ut-
terance, which could interrupt the speaker. This makes large
amounts of data in various formats trainable, including textual
conversation data without audio information, as well as tran-
scription of spoken conversation.

We performed both automatic and manual evaluations, in
terms of response timing and the degree to which the generated
responses reflect the substantialness parameter. These evalua-
tion results showed that our proposed method was able to es-
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timate response timing with better performance than baseline
models, which estimate response timing by clause boundaries.
The evaluation results also showed that our proposed method
using Dynamic-Prompt-Tune was able to generate responses
more in line with the given substantialness parameter than mod-
els with Fine-Tune and Prompt-Tune.

In summary, the contributions of this paper are as follows:

* Integrated response timing estimation with response genera-
tion by GPT.

» Estimation of response timing through data augmentation us-
ing pseudo-samples randomly cut in the middle of utterances.

* Dynamic-Prompt-Tune was used to efficiently learn the re-
sponse substantialness parameter from a small number of
data.

2. Proposed Method

An overview of the proposed method is shown in Figure 1.
The proposed model consists of a GPT and a three-layer MLP.
The MLP is Prompt-Token-Encoder for generating prompt to-
ken embedding for response substantialness control. As a di-
alogue system, the system takes response substantialness pa-
rameter with three levels of values and the speaker’s utterances
(Figure 2), and generates responses in a substantialness consis-
tent with the parameter. The response substantialness parameter
is assumed to be determined by rule-based methods using fea-
tures such as pause length.
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Figure 1: Conceptual figure of the proposed method
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Figure 2: Response Substantialness Parameter

2.1. Response Timing Estimation

To augment the insufficient amount of the conversation datasets,
we generate negative response timings by randomly cutting
the speaker’s utterance in the middle, replacing the listener
response with a special token (<none>). This augmentation
comes from our observation that it is normally inappropriate to
make a response in the middle of an utterance, which could in-
terrupt the speaker. Then the GPT model is fine-tuned by these
utterance-response pairs to estimate the listener response tim-

ing.
2.2. Response Substantialness Control

We generate responses using prompt token embedding that are
dynamically generated by our user-specified parameter for re-
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Table 1: Evaluation results of response timing estimation (Au-
tomatic Evaluation)

Precision Recall FI1-Score
0.554 0.893 0.684
0918 0.869 0.893

Clause Boundaries Model
Dynamic-Prompt-Tune

Table 2: Evaluation results of response timing estimation (Hu-
man Evaluation)

Precision Recall F1-Score
0.721 0.708 0.714
0.717 0.882 0.791

Clause Boundaries Model
Dynamic-Prompt-Tune

sponse substantialness control.

The proposed method uses only dynamic prompt token em-
bedding excluding the static part of Control-Prefixes. That is,
the embedded representation generated by the Prompt-Token-
Encoder is used as the prompt token embedding. The model
takes the parameter for response substantialness control and
utterance-response pairs, which are pairs of speaker utterances
and listener responses. During training, only the training pa-
rameters of the Prompt-Token-Encoder are updated.

3. Experiment
3.1. Dataset
3.1.1. Response Timing Estimation and Response Generation

For Fine-Tune, we used the Corpus of Everyday Japanese
Conversation (CEJC, 168,350 pairs) [11], the Nagoya Univer-
sity Conversation Corpus (33,361 pairs) [12], JEmpatheticDi-
alogues (40,000 pairs) [13], JPersonaChat (61,870 pairs) [13],
and independently collected Japanese tweets (5,000,000 pairs).
Regarding the spoken conversation corpus, we only used the
transcribed text without audio information, which was format-
ted into utterance-response pairs using the results of the follow-
ing automatic back-channel determination.

We manually labeled if an utterance was back-channel or
not, for 10,000 samples in CEJC evaluation dataset. Then,
we fine-tuned BERT [14] to determine whether the input sam-
ples were back-channel or not. We used the Japanese Spo-
ken Language Partial Learning BERT' as a pretrained BERT
model, which was trained by Wikipedia and CSJ [15]. We
divided the manually labeled 10,000 samples into 8(train-
ing):1(validation): 1(evaluation). The accuracy of this evalu-
ation was 0.958. The original corpus texts were divided by
these automatically determined back-channels, which became
the units of the utterance-response pairs.

As described earlier, we randomly cut off 10% of the
speaker’s utterances in the middle and replaced them with an
additional special token (<none>), using these special tokens
as negative samples. We divided the CEJC corpus into training
8: verification 1: evaluation 1, while all other corpora are used
as training dataset with the training data taken from CEJC.

3.1.2. Response Substantialness Control

Using 1,200 randomly selected speaker utterances from JEmpa-
theticDialogues, we manually created gold standard responses

Uhttps://www.anlp.jp/proceedings/annual_meeting/2021/pdf_dir/P4-
17.pdf
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Figure 3: Parameter effectiveness for response substantialness control (Automatic Evaluation)

Table 3: Parameter effectiveness for response substantialness control (Human Evaluation)
E R, E represent Fluency, Relevance and Effectiveness, respectively.

0.0 0.5 1.0
F R E F R E F R E
Fine-Tune 478 3.92 460 4.65 396 4.16 4.62 3.79 2.65
Prompt-Tune 497 3.67 476 482 426 4.12 4.76 4.06 2.83

Dynamic-Prompt-Tune 4.98 3.87 4.68

494 441 4.63 4.86 4.20 3.52

for each of three level response substantialness control parame-
ters: 0.0, 0.5, or 1.0; 0.0: no response, 0.5: only back-channel,
1.0: an empathetic response. The empathetic responses were
made based on the original responses of the JEmpatheticDi-
alogues. The training and evaluation data consisted of 600
speech response pairs, 200 pairs for each of the three level pa-
rameter. The data preprocessing for response timing estimation
described in the previous chapter was applied to 10% of the total
data.

3.2. Model

We used japanese-gpt-1b *, a pre-trained Japanese GPT model,
with its tokenizer. We fine-tuned japanese-gpt-1b with the train-
ing dataset for the response timing estimation and response gen-
eration above. We used this fine-tuned model throughout the
following experiment models.

For response substantialness control, we experimented and
compared the Fine-Tune, Prompt-Tune, and Dynamic-Prompt-
Tune models with 3 additional types of learning, respectively.
These three models are used for both experiments of the re-
sponse timing estimation and response generation, and the re-
sponse substantialness control.

3.2.1. Fine-Tune Model

We further fine-tuned the common fine-tuned GPT model, by
adding special tokens for the 3 levels of parameter to the end of
the input utterance. The number of epochs was set to 3.

3.2.2. Prompt-Tune Model

The above Fine-Tune model was further Prompt-Tuned, with a
prompt token embedding size of 100 and an epoch count of 50.
3.2.3. Dynamic-Prompt-Tune Model

Unlike the above two models, the numerical values of the pa-
rameter are input directly into the Prompt-Token-Encoder; the

Zhttps://huggingface.co/rinna/japanese-gpt-1b
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prompt token size is set to 20 and the number of epochs to 50.

3.3. Experimental Settings

prompt token sizes were determined from preliminary exper-
iments. In the preliminary experiments, we manually selected
which one produces responses in line with the response substan-
tialness parameter, comparing 5, 10, 20, 50, and 100 prompt
token sizes. Within the manually selected settings, we adopt
the smallest prompt token size for each model. The number of
MLP neurons in the Prompt-Token-Encoder was set to 1 for the
input layer, 10,000 for the middle layer, and 40,960 for the out-
put layer. The batch size during training was set to 8, and the
learning rate was set to 5e-05 for Fine-Tune and 0.3 for Prompt-
Tune and Dynamic-Prompt-Tune. AdamW was used as the op-
timizer, and the number of epochs was set to the value at which
loss converged during training.

4. Experiment Evaluation and Results
4.1. Response Timing Estimation
4.1.1. Automatic Evaluation

We randomly cut off the speaker’s utterances in the middle of
a sample, for half of the evaluation dataset, regarding these as
negative samples where we should not make responses. The
rest of the dataset includes the original utterances as they are, so
we regard these original ones as positive samples, i.e. timings
which can make responses. As a result, we obtained a balanced
evaluation dataset.

In addition to the proposed Dynamic-Prompt-Tune model,
we evaluated a rule-based baseline model which uses clause
boundaries determined by the surface forms of parts of speech
and words obtained by Japanese morphological analyzer Ju-
man++ [16, 17](Ver.2.0.0-rc3).

Table 1 shows the automatic evaluation results, where re-
sults of Dynamic-Prompt-Tune model are the response substan-
tialness parameter pre-fixed at 0.5. The proposed Dynamic-
Prompt-Tune model achieved an F1-Score approximately 20%
higher than that of the baseline model.



Table 4: Example of response generation

Model Input Parameter | Response Generation Results
Fine- SHIFRZELHEC T 7 0.0 FDRATEE LU D5 722 (1 see... that was fun, wasn’t it?)
Tune AT 0.5 #81L A > 722 (Did you have a good time?)
(I went out with friends today) 1.0 #8L A o 722 (Did you have a good time?)
Prompt- SHIZKZE L HENIZIT o7 0.0 5 A (yeah)
Tune ATZ 0.5 & %25 7242 (Good for you.)
(I went out with friends today) 1.0 W78 — (T like it.)
Dynamic- | 4 HIZKE & EFIZIT - 72 0.0 <none>
Prompt- | A, 77 0.5 Tohd (Isee.)
Tune (I went out with friends today) 1.0 W\ EE LT 5 (1 like it. You're a young man, aren’t you?)

4.1.2. Human Evaluation

For the human evaluation dataset, we extracted transcribed text
from the Corpus of Spoken Japanese (CSJ), a total of 30 minutes
which consists of approximately 10 minutes of recordings from
three different speakers. Three annotators manually labeled bi-
nary response timings. We measured the agreement between
each annotator and the system’s estimation by Precision, Re-
call, and F1-Score as human evaluation metrics. Table 2 shows
the average values of the three annotators. The inter-annotator
agreement was 0.465 in Fleiss’ Kappa [18].

Similar to the automatic evaluation, the Dynamic-Prompt-
Tune model was able to estimate with higher evaluation scores.

4.2. Effectiveness of Response Substantialness Parameter
4.2.1. Automatic Evaluation

It can be said that our gold standard dataset generates more di-
verse and longer responses as the response substantialness pa-
rameter increases. Therefore, we used Distinct-1,2 [19] and
length of generated text to evaluate the generated responses
whether the parameter changes were effective (Figure 3). For
evaluation purposes, we randomly extracted 1,000 samples
from the CEJC evaluation dataset that contained empathetic re-
sponses, and used only the speaker’s utterance portion. Further-
more, the Dynamic-Prompt-Tune model conducted response
generation with parameters spaced at 0.1 intervals.

Compared to the Fine-Tune and Prompt-Tune models, the
Dynamic-Prompt-Tune model has been suggested to perform
response generation more in line with the response substantial-
ness parameter, as significant variability has been observed in
both the Distinct score and the length of the generated text.

4.2.2. Human Evaluation

For the human evaluation of the parameter effectiveness of re-
sponse substantialness control, we randomly extracted 100 sam-
ples from the CEJC automatic evaluation dataset. Three anno-
tators manually evaluated responses generated for each of the
3 parameter (0.0, 0.5, and 1.0) by a 5-point scale in Fluency,
Relevance, and parameter Effectiveness, respectively (Table 3).
Dynamic-Prompt-Tune model showed better evaluation
scores than baselines, particularly for larger parameter values.

5. Discussion
5.1. Example of Response Generation

Table 4 shows examples of response generation for the Fine-
Tune model, Prompt-Tune model, and Dynamic-Prompt-Tune
model, for each response substantialness parameter. There ap-
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pears to be little change in the response generation results for
the Fine-Tune model and the Prompt-Tune model when the pa-
rameter is changed. However, Dynamic-Prompt-Tune model
generated a special token indicating no response(<none>)
when the parameter is 0.0, and generated back-channel when
the parameter is 0.5. Furthermore, when the parameter is
1.0, the Dynamic-Prompt-Tune model was able to generate
empathic responses. These results suggest that the Dynamic-
Prompt-Tune model was able to generate responses along with
the specified parameter.

5.2. Limitations of the Proposed Method

If the input text is grammatically broken, words are omitted, or
fillers are inserted, the proposed model often generates irrele-
vant responses. This is likely to occur because the input does
not include a long dialogue history and lacks a mechanism to
appropriately summarize the utterance.

6. Conclusions

Dialogue system is required to continuously perform listening
responses for smooth communication in spoken dialogue with
humans. We proposed a method for estimating timings when
the listener should respond, and for generating the responses.
In our proposed method, response timing is estimated by in-
putting response substantialness parameter and utterances into
a response generation model, and response substantialness is
controlled by a prompt token embedding dynamically gener-
ated from the parameter. To augment insufficient conversational
dataset, we generate negative response timings by randomly
cutting the speaker’s utterance in the middle. These methods
enable the use of various forms of dialogue data for response
timing estimation, either text chat or spoken dialogue, while re-
sponse substantialness control can be learned efficiently from a
small amount of data. From the results of automatic and human
evaluation, we confirmed that the proposed method can gen-
erate responses with more natural timing and in line with the
given parameter compared to the baseline model.

Generating responses that follow non-linguistic informa-
tion, such as the flow and rhythm of the conversation, is a future
work.
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