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Abstract
We propose a recursive separation model for an unknown num-
ber of sound sources based on deep learning-based beamform-
ing. Recursive separation models have been investigated as a
way to separate a mixture signal composed of an unknown num-
ber of sources in a single-channel condition. The mixture sig-
nal is separated with residual information in a recursive manner.
Although the recursive separation model can be extended to a
multi-channel condition using a beamforming-based filter, the
separation performance is degraded because the beamforming-
based filter tends to accumulate estimation errors in the recur-
sions. To address this problem, we introduce a local Gaussian
model (LGM)-based recursive separation model. The proposed
method mitigates the accumulation of errors by reusing esti-
mated parameters and applying only one filter to the mixture
signal. Experimental results show that our proposed method
outperforms a separation model using an accumulative filter.
Index Terms: Supervised sound source separation, Beamform-
ing, Unknown number of sources

1. Introduction
Sound source separation segregates source signals from an ob-
served mixture signal. This technology is a fundamental tech-
nology for machine listening, for example, automatic speech
recognition (ASR) or sound event detection [1–3]. Owing to
the development of deep learning, supervised sound source
separation methods have shown powerful separation perfor-
mance [4–9]. These methods train a separation model using a
deep neural network (DNN) with pairs of isolated source signals
and their mixture signals. The separation model learns spectral
patterns of the sources from a large amount of training data.

When the observed mixtures are multi-channel signals,
beamforming using outputs of the DNN has been investi-
gated [7–10]. Linear filtering based on beamforming mitigates
nonlinear distortion and improves the word error ratio of ASR
systems [7]. In particular, separation models based on the lo-
cal Gaussian model (LGM) are promising for their expandabil-
ity [11]. LGM introduces a generative model of the source sig-
nal. The separation is formulated as an estimation of the multi-
channel Wiener Filter (MWF) based on the generative model.
The generative model of LGM is widely used, for example, in
joint separation and dereverberation [12, 13] and unsupervised
training [14, 15]. The separation model with DNN is trained to
estimate spatial covariance matrices (SCMs) and power spectral
densities (PSDs) in order to calculate the MWF.

Most deep learning-based separation methods, including
LGM-based beamforming, assume that the number of sound
sources is given, although it is actually unknown in most cases
of real environments. A straightforward approach is to train the

models for each number of sources after estimating the number
of sources by source counting methods [16–19]. However, this
approach has two problems. First, it requires expensive training
costs for individual training with each number of sources. Sec-
ond, the maximum number of sources that can be separated is
limited by the network architecture.

A recursive approach has been investigated to address these
problems [20–22]. A separation model in this approach has two
output layers for a single separated signal and residual infor-
mation. After the separation, the mixture signal with residual
information is input into the model to obtain the next outputs
in a recursive manner. This approach uses a single model that
can separate the mixture composed of an arbitrary number of
sources by giving the number of sources. In addition, this ap-
proach simplifies source counting to a binary classification that
determines whether there exists any source signal or not in the
residual. This simplification makes it easier to determine a
threshold of the source counting than activity detection-based
counting methods [23–25].

Although recursive approaches have been proposed to esti-
mate time-frequency (TF) masks for a single-channel condition,
their possible extension to multi-channel using beamforming re-
mains unclear. An accumulative filter approach (AFA), which
applies multiple separation filters accumulatively to the mixture
signal is effective for mask-based separation [21]. However,
beamforming uses not only the amplitude but also the phase for
the separation, and then beamforming of AFA tends to accumu-
late estimation errors and degrade performance.

In this paper, we propose a multi-channel recursive sepa-
ration model for an unknown number of sources. We formu-
late a multi-channel mixture signal as the sum of source signals
and a residual signal based on LGM for the recursive separa-
tion model. Based on this formulation, the separation model
we propose estimates SCMs and PSDs for a source signal and
a residual signal using the original mixture signal and the pre-
vious residual signal. The key idea of our proposed method is
to reuse the estimated parameters. The parameters of a source
signal and a residual signal are estimated in each recursion, and
the MWFs are calculated using parameters up to their recursion.

The main contribution of this study is to extend the recur-
sive separation model to the multi-channel condition. Although
the AFA accumulates estimation errors and makes training more
difficult, our proposed method applies a single filter to the mix-
ture signal and then mitigates the accumulation. The experi-
mental results with 2 to 4 source mixtures show that our pro-
posed method outperformed multi-channel separation models
with a given number of sources and with an unknown number
of sources based on AFA.
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2. Preliminary
In this section, we explain prior works, a deep learning-based
supervised sound source separation with LGM for a given num-
ber of sources and recursive sound source separation for an un-
known number of sources.

2.1. Deep learning-based Beamforming for Given Number
of Sources

In this paper, all processing is in the TF domain. M -channel
observed mixture signal xft ∈ CM is given as a sum of N
target source signals snft ∈ CM (n = 1, . . . , N ) in the TF
domain as follows:

xft =
N∑

n=1

snft, (1)

where t = 1, . . . , T and f = 1, . . . , F are time and frequency
indices, respectively. LGM assumes that the source signal snft

follows a prior complex Gaussian distribution:

snft ∼ NC (0, λnftHnf ) , (2)

where Hnf ∈ SM×M
+ is the SCM and λnft ∈ R+ is the PSD.

The distribution of the source signals conditioned by the ob-
served mixture signal is derived from Eq. (1) and (2) as

snft | xft ∼ NC (Wnftxft,Vnft) , (3)

Wnft = λnftHnf

(
N∑

n=1

λnftHnf

)−1

, (4)

Vnft = (I−Wnft)λnftHnf . (5)

The separated signal of the MWF ynft = Wnftxft can be
seen as a maximum a posteriori (MAP) estimation of Eq. (3).

The pre-trained deep learning-based separation model esti-
mates the parameters of the source signal (i.e., λnft and Hnf )
from the observed mixture signal xft. While the DNN directly
outputs estimated PSD λnft, the SCM is estimated via the es-
timation of TF masks mnft ∈ [0, 1]. The TF mask represents
the dominant source in each TF bin. The SCM is estimated
approximately by TF masks as:

Hnf =
T∑

t=1

mnftxftx
H
ft. (6)

After this process, Hnf is normalized to tr(Hnf ) by M for
numerical stability.

In the training of the separation model, the loss is calcu-
lated with separated signals and reference source signals. We
denote the n-th separated signal and reference source signal as
yn, sn ∈ CF×T×M , respectively. In calculating the loss func-
tion, there is permutation ambiguity for the source index n, for
example, the output order of the separated signal can be 2, 1
while the output order of the reference is 1, 2. Utterance-level
permutation invariant training (uPIT) [5] solves this ambiguity
using the minimum loss among N ! permutations as follows:

LS = min
ϕ

(
N∑

n=1

L(yn, sϕ(n))

)
, (7)

where ϕ indicates all permutations of the sources.

2.2. Recursive Sound Source Separation for Arbitrary
Number of Sources

The separation model described above cannot separate mixture
signals when the number of sources exceeds the number of out-
put layers. To handle an arbitrary number of sources, a recur-

sive separation model has been investigated [20, 21, 26]. This
model separates mixture signals in recursions corresponding to
the number of sources. The model has two output layers for a
separated signal and residual information. The recursive sound
source separation is formulated with the n-th residual informa-
tion rn as follows:

(yn, rn) = f(x, rn−1; Φ), (8)

where f(·) is a transform of the separation model with parame-
ter Φ. The residual information is used to convey the separation
result of the previous recursion to the model. The observed mix-
ture signal is separated into only one source signal and resid-
ual information, and then the model again separates the mixture
with the residual information into another source and the next
residual signal.

Previous recursive separation methods have been proposed
for the single-channel condition. In this condition, the TF mask
is directly used for the separation as ynft = mnftxft. In one
study [20], the output mask is accumulated as the residual mask
for the residual information. The residual mask is initialized
with 1 and subtracted by the estimated mask of the source for
each recursion in an accumulative manner. In contrast, resid-
ual information of LGM is difficult to define because the MWF
based on LGM is composed of both the PSD and SCM. In an-
other work [21], only the residual signal is used for the next
recursion This method estimates accumulative filters and does
not use residual signal and mixture signal simultaneously. Al-
though this method can be applied to beamforming, the estima-
tion errors are accumulated through the recursion.

2.3. Source Counting for Unknown Number of Sources

Counting the number of sources is required for the recursive
separation model when the number of sources is unknown.
Although conventional source counting methods estimate the
number of sources directly from the input mixture, the recursive
separation model simplifies it to binary classification through
the recursions. In each recursion, a flag c ∈ {0, 1} to stop the
recursion is estimated. When there exists any source signal in
the input residual information, c is 1, and otherwise, it is 0. This
simplification of the source counting improves upon the source
counting accuracy reported previously [21].

Previous works [20, 21, 26] use a DNN to estimate a stop
flag. The model outputs an estimated stop flag ĉ ∈ [0, 1] in
each recursion. The loss function for the training is the binary
cross entropy loss as follows:

LC = −c log(ĉ)− (1− c) log(1− ĉ). (9)

The DNN for the counting is integrated into the separation
DNN [20, 26] or independent [21].

3. Proposed
We propose a deep learning-based beamforming method with
the recursive separation model for an unknown number of
sources. The separation model is based on LGM with the resid-
ual signal.

3.1. Signal Model with Residual Signal

We assume that the mixture signal is composed of n source sig-
nals and a residual signal in n-th recursion similarly to Eq. (1):

xft =
n∑

n′=1

sn′ft + rnft. (10)
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Figure 1: Overview of training flow of proposed model. MWFs for the separated signal and resignal signal are estimated by each
recursion. Parameters estimated in each recursion are encircled by red lines. Reused parameters are encircled by gray lines.

In addition, we assume that the residual signal follows the com-
plex Gaussian distribution as the same as Eq. (2):

rnft ∼ NC
(
0, λ

(r)
nftH

(r)
nf

)
, (11)

where λ(r)
nft and H

(r)
nf are PSD and SCM for the residual signal,

respectively. We denote λ(s)
nft and H

(s)
nf as the PSD and SCM for

the n-th source signal. MWFs of the n-th source signal W(s)
nft

and for the residual signal W(r)
nft are derived in the same way

as Eq. (3):

W
(s)
nft = λ

(s)
nftH

(s)
nf

((
n∑

n′=1

λ
(s)

n′ftH
(s)

n′f

)
+ λ

(r)
nftH

(r)
nf

)−1

,

W
(r)
nft = λ

(r)
nftH

(r)
nf

((
n∑

n′=1

λ
(s)

n′ftH
(s)

n′f

)
+ λ

(r)
nftH

(r)
nf

)−1

.

The separated signals of the MWFs correspond to the MAP es-
timation of n-th source signal and the residual signal.

3.2. Recursive Separation Model Based on LGM

We propose a recursive separation model based on LGM that
estimates the PSDs and SCMs for the source signal and the
residual signal in each recursion. An overview of the proposed
model is shown in Figure 1. A key idea of our approach is to
apply only one filter to the mixture signal by reusing estimated
parameters. This approach mitigates the accumulation of errors.

In the n-th recursion, the model estimates the PSD and
SCM for the n-th source signal λ

(s)
nft and H

(s)
nf , and for the

residual signal λ(s)
nft and H

(s)
nf , respectively. As input, our model

uses the mixture signal and the residual signal of a previous re-
cursion. The residual signal includes both information on the
PSD and the SCM. The initial residual signal r0ft in the first
recursion is the mixture signal. To reduce calculation cost, the
first channel of the residual signal is used because the multi-
channel information on the residual signal is similar to the ob-
served mixture.

The separated signal and residual signal are obtained by the
MWFs mentioned above in the training. The MWFs for the n-th
separated signal and residual signal are calculated with param-
eters of the first to the n-th source signals λ(s)

n′ft and H
(s)

n′t, and

n-th residual signal λ(r)
nft and H

(r)
nf . The SCMs are calculated

with the masked mixture signal based on Eq. (6). The training of

the separation model is based on the uPIT using only the sepa-
rated signals obtained in each recursion. By calculating the loss
with separated signals using λ

(r)
nft and H

(r)
nf (n = 1, . . . , N),

the model learns to estimate the parameters for residual signals.
In contrast, the separated signals are obtained by the MWF

based on Eq. (4) after all recursions in the test. In other words,
all separated signals are obtained by the parameters used in the
last recursion (described at the bottom of Fig. 1.) We experi-
mentally confirmed that the separation performance improved
by using the MWFs based on Eq. (4) compared to using the
MWFs used in the training.

4. Experimental Evaluation
The proposed method was evaluated for both separation and
source counting performances. In addition, we compared the
performances among the number of sources of training data.

4.1. Dataset

We generated three datasets of multi-channel mixtures to eval-
uate the optimal number of sources composing the mixture
for the training of our proposed method. Each dataset had 2
sources, 3 sources, and 2 to 3 sources mixtures. The number of
sources for the mixture of 2 to 3 sources was set at a ratio of
one to one. The mixture signals were generated as observations
of four-channel microphone arrays. Each mixture consisted of
multiple source signals randomly selected from the Japanese
news article sentence corpus 1. The source signals were gener-
ated by convoluting room impulse responses (RIRs) [27]. The
array with random geometry was placed randomly around the
center of a room having dimensions of 5 m × 5 m × 3 m and
each source was located randomly. The angular difference be-
tween sources always had at least 15◦. The reverberation time
(RT60) was fixed to 200 ms. The average power of the source
signals was normalized randomly at a level between −2.5 and
+2.5 dB. The mixture signals were generated at 16 kHz, and
Gaussian noise was added with an SNR of 30 dB. The dataset
consisted of 20,000 and 5000 mixtures for training and vali-
dation sets, respectively. Three test datasets each consisted of
3000 mixtures with 2 to 4 sources.

1https://research.nii.ac.jp/src/JNAS.html

1690



Table 1: Separation performances in averages and standard deviations in SDR and PESQ. In this evaluation, the number of sources
was given from the oracle.

Method
Training

data
SDR (dB) ↑ PESQ ↑

2 sources 3 sources 4 sources 2 sources 3 sources 4 sources

Unprocessed - 0.09± 2.15 −2.98± 1.89 −4.73± 1.78 1.17± 0.09 1.09± 0.05 1.07± 0.04

LGM / non-AFA
(Proposed)

2 mix 14.64± 3.44 3.44± 4.60 −0.37± 4.27 2.06± 0.35 1.20± 0.20 1.10± 0.10
3 mix 13.34± 4.10 9.27± 3.77 4.06± 4.53 1.84± 0.34 1.51± 0.24 1.25± 0.17

2 to 3 mix 14.30± 3.36 9.03± 3.74 3.97± 4.50 2.00± 0.34 1.49± 0.24 1.24± 0.17

LGM / fixed number 2 mix 13.47± 3.67 - - 1.84± 0.32 - -
3 mix - 6.80± 4.07 - - 1.34± 0.19 -

LGM / AFA 2 to 3 mix 13.94± 3.46 7.99± 3.93 2.91± 4.46 1.93± 0.33 1.43± 0.22 1.20± 0.14

Mask / AFA 2 to 3 mix 9.05± 3.95 4.48± 4.01 0.34± 4.05 1.87± 0.42 1.37± 0.25 1.11± 0.11

4.2. Conditions

The proposed model consisted of a temporal convolutional net-
work [6, 15, 28]. The input features were first transformed
into 256-channel vectors with a 1×1-convolutional (1×1-conv)
layer. Then three modules having eight dilated convolutional
layers were stacked. Each layer was the separable depth-wise
convolution with a 512-channel depth-wise layer and paramet-
ric rectified linear units (PReLUs). The outputs of the model
were obtained by 1× 1-convolutional layers. The output layers
for the TF masks and PSD were followed by sigmoid and soft-
plus activation, respectively. The input features consisted of a
log-power spectrogram, three-dimensional directions of arrival
(DoAs) of the mixture signal, and the residual signal. The DoAs
at each TF bin were calculated based on an array geometry [29].

The loss function of the training was the mean squared er-
ror of the magnitude in the TF domain because of comparison
with a mask-based model [30]. The networks were trained by
an Adam optimizer [31] for 200 epochs with a learning rate
of 0.001. Spectrograms were obtained by short-time Fourier
transform with a window size of 512 samples and a hop length
of 128 samples. The batch size for training was 16. These hy-
perparameters were empirically determined.

We trained an external network for the source counting. The
input features were the same as the separation network, i.e., the
powers, the DoAs, and the residual signal of the separation net-
work. Differences in the network between the separation net-
work and the counting network were the depth of the network
and the output layer. The counting network has one module
of the dilated convolutional layer. The output layer of the stop
flag was followed by the average pooling over the entire time
and frequency and sigmoid activation. The counting network
was trained based on Eq. (9) in all recursions. This network
was trained after the training of the separation network for 10
epochs. The threshold value for the classification was 0.5.

We evaluated the separation performances for each test
dataset with the signal-to-distortion ratio (SDR) in dB [32] and
the perceptual evaluation of speech quality (PESQ) [33], and the
source counting performance with the accuracy, respectively.
The baselines are as follows:

1. LGM-based model for a fixed number of sources
2. LGM-based model with the recursive separation (AFA)
3. Mask-based model with the recursive separation (AFA)

The input features and loss function of these baselines are the
same as the proposed method. The second baseline estimated
the MWFs of the separated signal and residual signal based on
the AFA, in other words, the n-th separated signal and resid-
ual signal were calculated only using parameters of the n-th re-

Table 2: Source counting accuracy by test dataset

Method
Training

data
Accuracy (%)

2 src. 3 src. 4 src.

Proposed 2 to 3 mix 91.8 83.7 24.4

Mask / AFA 2 to 3 mix 80.3 78.7 47.6

cursion, and the filters were applied accumulatively. The third
baseline estimated the TF masks. The residual mask was calcu-
lated by 1 − mnft. The difference in the network architecture
between our model and the baselines was only the output layer.

4.3. Results

Table 1 shows the separation performance of each method. The
proposed method trained with 2 to 3-source mixtures outper-
formed the baselines for all test datasets in both the SDR and
PESQ. Recursive models outperformed a model for a fixed
number of sources. Compared with the mask-based model, the
LGM-based model improved the performance. These results
show that the recursive separation with beamforming was effec-
tive for the multi-channel condition. In addition, the proposed
method outperformed the LGM-based recursive model based on
the AFA. This result implies the proposed method mitigates the
accumulation of estimation errors. The proposed model trained
with 2 to 3-source mixtures was comparable to the proposed
model trained with mixtures composed of the number of sources
corresponding to the test dataset.

Table 2 shows the source counting accuracy of each
method. The proposed method outperformed the mask-based
model for 2 and 3-source mixtures. The accuracy for unseen 4-
source mixtures, which were not in the training conditions, was
significantly degraded in spite of the separation performance.
This result implies that source counting performance for an un-
seen number of sources depends on not only the separation per-
formance but also how we constitute the residual information.

5. Conclusion
In this paper, we proposed a recursive sound source separation
method extended for the multi-channel condition. This model is
based on the LGM for the source signal and the residual signal.
Our method can separate a mixture signal composed of an un-
known number of sources using beamforming. The reusing of
parameters mitigates the accumulation of estimation errors and
improves the separation performance. Our future work includes
residual information to improve the source counting accuracy.
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