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Abstract
Chronic kidney disease (CKD) causes a continuous decline in
kidney function and structural damage to the kidneys. The
speech characteristics of CKD speakers will be different from
those of non-CKD speakers because the typical characteristics
of CKD, which are impairment of respiratory and laryngeal
muscles, can affect respiration, the primary source of speech.
In this paper, we identify the glottal characteristics of CKD
speech and then investigate whether CKD can be automatically
detected using the glottal features. Statistical analysis shows
significant differences between groups in glottal source fea-
tures, representing the breathy characteristic of CKD speech.
Through the classification experiment, we compare the perfor-
mance of solely using voice quality features (baseline) against
additional glottal and spectral features. When glottal source fea-
tures and voice quality features are used together, an F1-score
of 0.88 with a 76% relative increase compared to the baseline is
obtained.
Index Terms: chronic kidney disease, glottal source parame-
ters, automatic detection, voice pathology

1. Introduction
Chronic kidney disease (CKD) is characterized by a continuous
decline in kidney function and structural damage to the kidneys.
CKD alters the function and structure of the kidney irreversibly
over months and years, but there may not be any symptoms in
the early stages of the disease [1]. To identify CKD, a test to
measure the presence of albuminuria and estimated Glomeru-
lar filtration rate (eGFR) from the serum creatinine is essential,
which requires blood and urine tests [2].

CKD affects various bodily systems, particularly the respi-
ratory system, as well as the cardiovascular, neurological, mus-
culoskeletal, immunological, endocrine, and metabolic systems
[3]. In both healthy and ill conditions, lung and kidney func-
tions are related to maintaining the body’s acid-base balance.
Any changes to the renal system will affect the respiratory sys-
tem, and vice versa [3, 4]. The strength and endurance of the
respiratory muscles are significantly reduced in CKD patients
compared to non-CKD persons, and the potency of the laryngeal
and respiratory muscles is also severely compromised [3, 5].
End-stage renal disease (ESRD) characteristics, including ac-
cumulation of uremic toxins, acid-base imbalance, and volume
overloads, can lead to voice change owing to decreased lung
function and edema of the vocal fold [6]. As respiration is the
primary source of speech [4], CKD patients’ voices might rep-
resent the presence and progression of the disease.

Previous studies investigated CKD patients’ speech using
voice quality, prosodic, pronunciation, aerodynamic, and glot-
tal parameters [3, 4, 5, 7, 8, 9]. In common, voice quality

(jitter, shimmer, harmonics-to-noise ratio (HNR)), pitch (F0),
and aerodynamic (maximum phonation time, MPT) parameters
were analyzed. All studies reported lower MPT values on CKD
speakers, but those studies showed conflicting results on voice
quality and pitch features. [3], [4], and [7] reported higher jitter
values on CKD speakers, while [5] and [9] reported lower jitter
values on CKD speakers. In terms of shimmer, [3], [4], [5], [7],
and [8] reported higher shimmer values on CKD speakers, but
[9] reported lower shimmer values on CKD speakers. Also, in
HNR, [3] and [5] reported lower HNR values on CKD speak-
ers, but [7], [8], and [9] reported higher HNR values on CKD
speakers. In terms of pitch, [3], [4], [5], and [7] reported higher
F0 values on CKD speakers, and [8] reported lower F0 values
regardless of gender, while [9] reported higher F0 in males, and
lower F0 in females. Additionally, [9] reported lower pronunci-
ation accuracy, longer speech duration, lower articulation rate,
and low H1-A3 value in CKD speakers’ speech. As CKD af-
fects the respiratory and laryngeal muscles, glottal parameters,
which are highly related to respiration, should be investigated,
but no studies investigated glottal parameters in depth.

[10] proposed an optimal methodology for automatically
diagnosing and predicting the severity of CKD using CKD
patients’ utterances. They utilized a handcrafted feature set
that contains spectral, voice quality, aerodynamic, glottal, and
prosodic features, eGeMAPS, and CNN features extracted from
sustained vowel, voiced sentence, and general sentence utter-
ances, and SVM and XGBoost classifiers. Handcrafted fea-
tures extracted from the general sentence and using XGBoost
as a classifier obtained the best results on both the detection and
severity prediction task. However, as mentioned in the paper, a
significant class imbalance existed between non-CKD and CKD
groups, making the detection result unreliable.

This paper analyzes CKD speakers’ glottal characteristics
and compares them with those of non-CKD speakers’. Then
we compare an automatic CKD detection performance between
solely using voice quality features analyzed in previous stud-
ies against using additional glottal and spectral features. The
remainder of this paper is organized as follows: Section 2 de-
scribes the dataset used in this study. Section 3 outlines our
comparative analysis and automatic detection tasks. Section 4
presents statistical and experimental results; the discussion and
conclusions are outlined in the last section.

2. Dataset
We use Mun et al.[9]’s CKD dataset, which is built for research
on pathological voice analysis, automatic illness identification,
and severity prediction. This dataset includes utterances of sus-
tained vowel, a sentence made up entirely of voiced sounds, and
a paragraph of six phonetically balanced sentences that varied
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Table 1: Sustained vowel data from [9]

Stage # of utterances
(Total duration)

Speakers
# of male speakers
(average age, std)

# of female speakers
(average age, std)

Non-CKD 39
(8m 55s)

14
(55.7, 12.9)

20
(57.4, 15.7)

CKD stage 1 70
(13m 11s)

23
(52.9, 17.1)

32
(49.4, 14.6)

CKD stage 2 153
(29m 7s)

68
(58.9, 15.6)

49
(58.3, 12.1)

CKD stage 3 249
(47m 25s)

97
(64.7, 13.5)

65
(68.5, 12.5)

CKD stage 4 105
(17m 2s)

43
(66.2, 12.6)

19
(70.6, 9.8)

in length. We use only sustained vowel /a/ utterances to ana-
lyze glottal characteristics. Table 1 shows the sustained vowel
utterances in Mun et al.’s dataset. Specific explanations about
the stage of CKD are described in [9].

As can be seen in Table 1, non-CKD (control) group’s data
size is much smaller than the CKD group’s data size. When
there exists a significant difference in the number of data per
group, samples belonging to small groups are more likely to be
misclassified than samples belonging to large groups when ma-
chine learning or deep learning models are applied [11]. Thus
to resolve the imbalance, we import control data from Saar-
bruecken Voice Database [12]. As the average age of each CKD
group was between 52.9 and 70.6, we import neutral /a/ vowel
utterances of the speakers over 50 at the time of the recording
due to the aging effect on the voice [13]. We include utterances
of 20 male speakers (59.7 ± 6.7 old) and 27 female speakers
(60.3 ± 8.0 old). However, class imbalance still exists despite
adding the control data because of the small number of speakers
over 50. Thus, we randomly extract 20 utterances (ten from fe-
male, ten from male) from each CKD stage to balance the data
amount of non-CKD and CKD classes.

3. Methods
3.1. Features

3.1.1. Glottal source features

We extract glottal source features using the Disvoice toolkit
[14]. The Disvoice toolkit computes phonation features derived
from the glottal source reconstruction from sustained vowels.
These features are computed for every glottal cycle in segments
with a 200ms length frame to measure the glottal flow’s short-
term perturbations [15]. Then, the nine descriptors’ four statis-
tical functionals (mean, standard deviation, skewness, kurtosis)
are calculated, and 36 values are obtained per utterance. We use
mean values among four functionals for the statistical analysis,
identifying the differences between CKD and non-CKD speak-
ers. For the automatic detection task, we use all four function-
als. Nine descriptors are as follows.
• Variability of time between consecutive glottal closure in-

stants (GCI) (var GCI)
• Average opening quotient (OQ) for consecutive glottal cy-

cles: rate of opening phase duration / duration of glottal cycle
(avg OQ)

• Variability of opening quotient (OQ) for consecutive glottal
cycles (std OQ)

• Average normalized amplitude quotient (NAQ) for consec-
utive glottal cycle: ratio of the amplitude quotient and the
duration of the glottal cycle (avg NAQ)

• Variability of normalized amplitude quotient (NAQ) for con-
secutive glottal cycles (std NAQ)

• Average H1H2: Difference between the first two harmonics
of the glottal flow signal (avg H1H2)

• Variability H1H2 (std H1H2)
• Average of Harmonic richness factor (HRF): ratio of the sum

of the harmonics amplitude and the amplitude of the funda-
mental frequency (avg HRF)

• Variability of HRF (std HRF)
GCIs are time instants that mark the completion of a glot-

tal closure event regularly occurring across pitch cycles, once
per cycle. Time variability between GCIs is related to the F0
value and variability of F0 [16]. OQ is known as inversely pro-
portional to the intensity of the voice. Smaller OQ value refers
to the higher intensity [17]. NAQ is also a time-domain pa-
rameter closely related to the closing quotient (CQ), the coun-
terpart of OQ [18]. More recently, it has been demonstrated
that NAQ is strongly correlated with voice quality variations
and robust to noise and estimation errors [18]. Godin & Hansen
(2015) revealed that NAQ could separate the type of phonation
(breathy, normal, and pressed) effectively [18], and showed that
in both females and males, breathy voice showed significantly
higher mean and standard deviation value of NAQ than in nor-
mal voice. The difference between the amplitude of the first
harmonic and the amplitude of the second harmonic indicates
the relative length of the opening phase of the glottal pulse. H1-
H2 is expected to be large and positive for breathy voices and
small and positive or negative for creaky voices [19]. Lastly,
HRF is higher in modal voicing than that for breathy voicing
[18].

3.1.2. Voice quality features

We also extract voice quality features that are commonly used in
previous studies. Three voice quality features, jitter, shimmer,
and HNR, are extracted. It is known that those features can
describe vocal traits and provide a pathological voice diagnosis
[20]. Jitter represents changes in F0 over time, while shimmer,
which is very similar to jitter, represents changes in amplitude.
HNR is the proportion of harmonic to noise energy. All voice
quality features are extracted using Praat [21], and the minimum
and maximum pitches are set to 70 Hz and 625 Hz, respectively
[9]. We use them as baseline features for the classification task.

3.1.3. Spectral features

We extract Mel-frequency cepstral coefficients (MFCCs) for the
automatic detection task. A representation of a sound’s short-
term power spectrum used in sound processing is called a Mel-
frequency cepstrum (MFC), which is based on a linear cosine
transform of a log power spectrum on a nonlinear Mel scale
of frequency. An MFC is made up of coefficients known as
MFCCs. Not only applications for speaker identification and
recognition, but medical areas also utilize MFCCs for speech
quality evaluation [22]. Using the librosa [23] toolkit, we ex-
tract 12-dim MFCCs and log energy from each utterance.

3.2. Statistical analysis

We conduct statistical analysis to compare CKD and non-
CKD speakers’ glottal characteristics. First, we conduct the
Kolmogorov-Smirnov normality test to test the data normality.
Then the independent sample t-test is conducted on parame-
ters that satisfy the data normality requirements. The Mann-
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Table 2: Kolmogorov-Smirnov normality test result

Non-CKD CKD

Statistics Degree of freedom p-value Statistics Degree of freedom p-value

var GCI 0.203 86 0.000 0.216 80 0.000
avg NAQ 0.243 86 0.000 0.100 80 0.047
std NAQ 0.251 86 0.000 0.103 80 0.034
avg OQ 0.076 86 0.200 0.073 80 0.200
std OQ 0.132 86 0.001 0.131 80 0.002

avg H1H2 0.112 86 0.009 0.084 80 0.200
std H1H2 0.068 86 0.200 0.103 80 0.036
avg HRF 0.448 86 0.000 0.275 80 0.000
std HRF 0.418 86 0.000 0.303 80 0.000

Whitney U test, the nonparametric equivalent of an independent
sample t-test, is conducted on parameters that did not satisfy the
requirements for data normality. All statistical analysis is per-
formed using IBM SPSS Statistics 26 [24].

3.3. Automatic detection of CKD

3.3.1. Feature selection

We use feature selection methods to choose the optimal fea-
ture set for each task. Three primary feature selection methods
for machine learning are filter, wrapper, and embedded methods
[25]. The filter method is the most computationally efficient but
cannot handle redundant features. The wrapper method tends
to produce better classification accuracy, but it is computation-
ally complex. The embedded method is computationally less
complicated than the wrapper method, but it has the issue of
generalizability. In this paper, we use two embedded feature
selection methods, which are an L1-based (lasso) feature selec-
tion [26] and a tree-based ExtraTreesClassifier (ETC), and one
wrapper method, which is Recursive Feature Elimination (RFE)
[27] provided by the scikit-learn library [28]. Those three meth-
ods are frequently used algorithms in classification tasks.

3.3.2. Classification

CKD detection is implemented by training features on support
vector machine (SVM) and extreme gradient boosting (XG-
Boost) classifiers. SVM is the most commonly used classifier
for diagnosing speech disorders, and it is known to perform well
in high-dimensional, small-scale data classification tasks [29].
XGBoost is known to solve real-world problems well with a
small amount of data and shows good performance, especially
for categorical data or small data sets [30]. The hyperparame-
ters of SVM, C, and gamma are optimized between 10−4 and
104 through grid search, using stratified k-fold cross-validation
with ten splits. The depth of decision trees (3 to 6), number
of estimators to generate (12, 24, 32), learning rate (10−4 to
10−1), and gamma (0.5, 1, 2), which are the parameters of XG-
Boost, are also optimized through grid search as the SVM.

As described in Section 2, we use 86 utterances from non-
CKD speakers and 80 from CKD speakers. Since multiple ut-
terances exist from one speaker, the experiments are conducted
for a speaker-independent scenario, where speakers for training
and testing are separated. The ratio of training and test utter-
ances is set to 8:2.

4. Results
4.1. Statistical analysis

As shown in Table 2, among the nine glottal source features,
only one parameter satisfied the data normality requirements:
the average value of OQ. Thus the independent t-test is con-

Table 3: Independent t-test result (M: mean, SD: standard devi-
ation)

Non-CKD CKD t p-valueM SD M SD
avg OQ 0.396 0.078 0.449 0.085 -4.229 0.000

Table 4: Mann-Whitney U test result (M: mean, SD: standard
deviation)

Non-CKD CKD Mann-Whitney U p-valueM SD M SD
var GCI 4.87E-04 5.47E-04 5.01E-4 5.28E-04 3588.000 0.632

avg NAQ 0.006 0.005 0.010 0.004 5326.000 0.000
std NAQ 0.002 0.001 0.003 0.001 5406.000 0.000
std OQ 0.072 0.035 0.085 0.034 4313.000 0.005

avg H1H2 7.290 2.696 8.818 4.397 4135.000 0.025
std H1H2 5.785 1.996 6.078 2.642 3595.000 0.616
avg HRF 286.976 2080.985 -27.086 568.864 2402.000 0.001
std HRF 2666.371 12750.742 2342.591 4038.992 4329.000 0.004

ducted for the avg OQ, and the Mann-Whitney U test is con-
ducted for the rest of the parameters. Table 3 shows the inde-
pendent t-test results, and Table 4 shows the Mann-Whitney U
test results. CKD speakers show significantly higher average
and standard deviation values of NAQ and OQ than non-CKD
speakers. CKD speakers show a higher average value of var
GCI than non-CKD speakers, but the difference is insignificant.
For H1H2, CKD speakers show significantly lower average val-
ues than non-CKD speakers. CKD speakers show a higher stan-
dard deviation than non-CKD speakers, but the difference is in-
significant. Lastly, for HRF, CKD speakers show significantly
lower average and standard deviation values of HRF.

4.2. CKD detection

Table 5 shows the detection results using various combinations
of feature sets. The boldface shows the best performance. When
the classification experiment uses only voice quality features as
input, baseline F1-scores of 0.53 and 0.50 are obtained in SVM
and XGBoost, respectively. Applying ETC and RFE feature
selection increases performance, and both selection algorithms
chose HNR among the three voice quality features.

Overall, using MFCCs or glottal features solely or adding
those features on voice quality features leads to performance in-
creases on both SVM and XGBoost classifiers. Using MFCCs
as input leads to a performance increase, obtaining an F1-score
of 0.79 on the SVM classifier and an F1-score of 0.73 on the
XGBoost classifier. When glottal features are used, an F1-score
of 0.82 on the SVM was obtained. When RFE feature selec-
tion is applied, an additional performance increase is obtained,
with an F1-score of 0.85 using only 16 features. Using glottal
features on the XGBoost classifier obtained an F1-score of 0.79.
When ETC feature selection is applied, an F1-score is increased
to 0.85 using only 15 features.

When glottal features and baseline features are used to-
gether, an F1-score of 0.73 is obtained on the SVM classifier,
which is lower than the F1-score when using only glottal fea-
tures. When the RFE feature selection is applied, an F1-score
increases to 0.82, but it is still lower than the F1-score when
applying RFE feature selection to glottal features. The same re-
sults as using glottal features are obtained when those features
are used on the XGBoost classifier. Also, Lasso and the ETC
feature selection lead to the same results. However, when RFE
feature selection is applied, the highest overall score is obtained,
with an F1-score of 0.88, leading to a relative increase of 76%.

When MFCCs and baseline features are used together, an
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Table 5: Classification results (’-’ means that no feature selection is performed)

Features Feature selection SVM XGBoost

Algorithm # of features Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

Voice
quality
(VQ)

- (Baseline) 3 0.53 0.53 0.53 0.53 0.50 0.50 0.50 0.50
Lasso 3 0.53 0.53 0.53 0.53 0.50 0.50 0.50 0.50
ETC 1 0.56 0.57 0.56 0.56 0.56 0.56 0.56 0.56
RFE 1 0.56 0.56 0.56 0.55 0.56 0.56 0.56 0.56

MFCCs - 13 0.79 0.86 0.79 0.79 0.74 0.75 0.74 0.73

Glottal

- 36 0.82 0.84 0.82 0.82 0.79 0.79 0.79 0.79
Lasso 24 0.82 0.83 0.82 0.82 0.76 0.77 0.76 0.76
ETC 15 0.82 0.83 0.82 0.82 0.85 0.85 0.85 0.85
RFE 16 0.85 0.85 0.85 0.85 0.76 0.76 0.76 0.76

VQ
+

Glottal

- 39 0.74 0.74 0.74 0.73 0.79 0.79 0.79 0.79
Lasso 27 0.71 0.71 0.71 0.70 0.76 0.77 0.76 0.76
ETC 16 0.74 0.74 0.74 0.74 0.85 0.85 0.85 0.85
RFE 17 0.82 0.84 0.82 0.82 0.88 0.89 0.88 0.88

VQ
+

MFCCs

- 16 0.82 0.87 0.82 0.82 0.74 0.75 0.74 0.73
Lasso 16 0.82 0.87 0.82 0.82 0.74 0.75 0.74 0.73
ETC 14 0.85 0.89 0.85 0.85 0.74 0.75 0.74 0.73
RFE 14 0.79 0.86 0.79 0.79 0.74 0.75 0.74 0.73

Glottal
+

MFCCs

- 49 0.85 0.89 0.85 0.85 0.79 0.81 0.79 0.79
Lasso 37 0.79 0.81 0.79 0.79 0.85 0.85 0.85 0.85
ETC 28 0.79 0.80 0.79 0.79 0.82 0.82 0.82 0.82
RFE 29 0.82 0.87 0.82 0.82 0.82 0.83 0.82 0.82

VQ + MFCCs
+ Glottal

- 52 0.85 0.87 0.85 0.85 0.82 0.84 0.82 0.82
Lasso 43 0.85 0.87 0.85 0.85 0.85 0.85 0.85 0.85
ETC 28 0.85 0.87 0.85 0.85 0.82 0.83 0.82 0.82
RFE 49 0.85 0.87 0.85 0.85 0.82 0.84 0.82 0.82

F1-score of 0.82 is obtained on the SVM classifier, which is
higher than solely using baseline or MFCCs. When the ETC
feature selection is applied, an F1-score of 0.85 is obtained.
However, when those features are used on the XGBoost classi-
fier, the performance increase is not obtained compared to using
MFCCs only, and also, feature selection does not increase the
performance.

When MFCCs and glottal features are used together, an F1-
score of 0.85 and the highest precision of 0.89 are obtained on
the SVM classifier, which is higher than solely using glottal fea-
tures or MFCCs. In this case, feature selection does not work
well, leading to no performance increase. When those features
are used on the XGBoost classifier, an F1-score of 0.79 is ob-
tained, and when the Lasso feature selection is applied, F1-score
increases to 0.85.

When all the features are used, an F1-score of 0.85 is ob-
tained on the SVM classifier, and feature selection does not in-
crease performance. When all features are used on the XGBoost
classifier, an F1-score of 0.82 is obtained, and the Lasso feature
selection increases an F1-score to 0.82.

5. Discussion and Conclusion
This paper examines CKD speakers’ glottal source features and
compares them with non-CKD speakers’. Then we investi-
gate whether CKD can be automatically detected using glottal
source features. We analyze nine glottal source features through
statistical analysis. CKD speakers show significantly higher av-
erage NAQ, OQ, H1H2, and lower average HRF values than
non-CKD speakers. As described in section 3.1.1., those re-

sults indicate CKD speakers’ breathy phonation. It might be
caused by the effects of CKD on the respiratory and laryngeal
muscles. Compromise to respiration-related muscles can cause
CKD speakers to have difficulty controlling the muscles needed
for phonation and may be unable to maintain stable phonation.
Also, due to the vocal cord edema, incomplete vocal cord con-
tact might be caused, which leads to a breathy voice. The clas-
sification experiment results suggest that glottal features can be
used to detect CKD automatically. Moreover, the best perfor-
mance is obtained when glottal features are used in addition to
voice quality features, with a relative increase of 76% compared
to the baseline.

This paper is the first to analyze the glottal characteristics
of CKD speakers and conduct a classification experiment using
them. Future work includes analyzing selected features from
the feature selection algorithms which led to the best perfor-
mance. Additionally, we will conduct a severity classification
experiment with features used in this paper. Lastly, further ex-
periments with more CKD data should be conducted.
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