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Abstract
Current anti-spoofing and audio deepfake detection systems
use either magnitude spectrogram-based features (such as CQT
or Melspectrograms) or raw audio processed through convo-
lution or sinc-layers. Both methods have drawbacks: magni-
tude spectrograms discard phase information, which affects au-
dio naturalness, and raw-feature-based models cannot use tra-
ditional explainable AI methods. This paper proposes a new
approach that combines the benefits of both methods by us-
ing complex-valued neural networks to process the complex-
valued, CQT frequency-domain representation of the input au-
dio. This method retains phase information and allows for ex-
plainable AI methods. Results show that this approach out-
performs previous methods on the ”In-the-Wild” anti-spoofing
dataset and enables interpretation of the results through explain-
able AI. Ablation studies confirm that the model has learned to
use phase information to detect voice spoofing.
Index Terms: voice anti-spoofing, audio deepfake detection,
complex neural network

1. Introduction
Artificial Intelligence (AI) is advancing at a rapid pace, and has
enabled the development of numerous good and helpful appli-
cations that are changing the way we live, work, and interact
with each other. However, along with these positive advance-
ments, new threats have emerged, particularly in the form of
deepfakes and spoofs. Deepfakes are computer-generated im-
ages, videos, or audio that are created using AI algorithms to
manipulate and alter original content. Although deepfakes can
be used for harmless fun, they can also be misused for mali-
cious purposes such as creating fake news, information cam-
paigns, slander, or fraud. This is concerning as deepfakes can
be highly convincing, making it challenging to distinguish be-
tween genuine and fake content. Spoofing, on the other hand,
involves creating a fake or manipulated version of oneself to cir-
cumvent biometric identification systems such as facial recog-
nition or fingerprint scanners. This has significant implications,
especially in the realm of security, as it can compromise the
integrity of identity verification systems. As a result, the de-
tection of spoofed or faked content is becoming increasingly
important. It is crucial to develop effective methods for detect-
ing such misuse of AI in order to ensure that these technologies
are used ethically and responsibly.

Using Machine Learning (ML) for voice anti-spoofing re-
quires adequate preprocessing because human speech has long-
range temporal dependencies, with one second of audio usu-
ally represented by 16, 000 single data points or more. Previ-
ous approaches to voice anti-spoofing have taken one of two
approaches to audio preprocessing. Some have used spectral

preprocessing, transforming the time-domain waveform into a
magnitude spectrogram using the short-time Fourier transform
(STFT) or similar techniques. This approach has shown good
performance but has one key disadvantage: it discards phase
information from the spectrogram. This phase information is
crucial for audio quality and voice naturalness [1], and in the
domain of speech-to-text (STT), it is laboriously recreated us-
ing Griffin-Lim or neural vocoders [1, 2, 3]. As bad phase is
very audible1, we argue that it is a useful feature that should not
be discarded.

The second approach to voice anti-spoofing is to design
models that process raw audio directly, which have been shown
to be more effective [4, 5, 6], but lack transparency because ex-
plainable AI methods (XAI) such as saliency maps require input
data with spatial dimensions (i.e. at least two-dimensional in-
put).

In this paper, we propose a new approach to voice anti-
spoofing that combines the benefits of both previous ap-
proaches. We transform input audio into a complex-valued
spectrogram using the constant-Q transform, a technique
closely related to the STFT, which yields a complex-valued fre-
quency representation. This representation is mathematically
equivalent to the time-domain representation of the input au-
dio, but more suited to machine-learning algorithms. We then
process this frequency representation using a complex-valued
convolutional neural network, which allows us to process all in-
formation present in the audio file, without the need to discard
the phase. We demonstrate that our proposed approach out-
performs both magnitude spectrogram-based models and raw-
feature models. Our approach is conceptually and architec-
turally simple, which sets it apart from some of the recent state-
of-the-art raw models. Moreover, it enables the use of explain-
able AI techniques.

In summary, our contributions to the field of voice anti-
spoofing can be outlined as follows:

• We emphasize the significance of phase information in
the complex Short-Time Fourier Transform (STFT) output,
which has been neglected in previous research.

• Based on this insight, we propose a corresponding complex-
valued input feature and neural architecture for jointly pro-
cessing both magnitude and phase information.

• We evaluate our approach and demonstrate its superiority
over both magnitude spectrogram-based models and raw-
based models.

We provide an online web interface2 where one can test arbi-
trary input, including YouTube videos, against our model.

1Audio examples available at google.github.io/phase-prediction.
2https://deepfake-total.com

INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

3814 10.21437/Interspeech.2023-901



2. Previous Work
As previously mentioned, voice anti-spoofing traditionally em-
ploys one of two feature preprocessing approaches. The first
approach involves using magnitude-spectral features like the
constant-Q transform (CQT) [7], log or mel-scaled spectro-
grams [8]. These techniques use the complex-valued STFT
of a time-domain audio signal as a foundation, extracting the
magnitude and discarding phase information. The result is then
squared, scaled, and possibly binned using the mel-scale [8] to
mimic the human ear’s perception. Previously suggested voice
anti-spoofing architectures have then employed neural compo-
nents such as convolutions, attention mechanisms, recurrence,
or transformer blocks [9, 10, 11, 12, 13] to process the resulting
spectrogram. These models have shown good performance, but
no longer achieve state of the art.

The second approach involves directly processing the time-
domain “raw” audio using either neural convolutions on the au-
dio file itself [14] or stacks of sinc-layers [15] corresponding to
rectangular band-pass filters. Max-pooling is often used [5] to
avoid phase mismatch between the audio waveform and the sinc
wavelets. The result is then processed using stacks of convolu-
tions and gated recurrence (RawNet2) [5], more advanced archi-
tectures like spectro-temporal graph attention neural networks
(RawGat-ST) [4], or differentiable architecture search [6].

Although these “raw” models have been shown to deliver
outstanding performance [4, 5, 6], they lack explainability. This
is because existing XAI techniques such as saliency maps [16]
or Smooth Grad [17] are designed for spatially-dimensioned in-
put, while “raw” audio is a one-dimensional vector. As a result,
it becomes challenging to comprehend and trust the models’
judgments. Among other disadvantages, this impedes the de-
tection of “learning shortcuts” [18], i.e. highly predictive, but
artificial correlations between input and target which do not re-
flect real-world causality. Detecting such shortcuts is particu-
larly crucial in voice spoof detection, where they have already
been identified [19] and may result in a lack of generalizability
to real-world scenarios [20]. Thus, there is an urgent demand
for explainable anti-spoofing models.

3. Proposed Approach
3.1. Complex-valued CQT spectrograms

In digital signal processing, an input audio signal X =
[X[0], X[1], . . . , X[n]] is represented in the time domain as a
series of scalar values X[t] ∈ [−1, 1] ∈ R, which correspond
to measurements of air pressure at time t/s, where s is the sam-
pling rate (e.g., 16 kHz or 16,000 samples per second). To con-
vert this signal into a frequency representation Z, one may use
the Short Time Fourier Transform, which is a bijective trans-
form:

Z[t, k] =

N−1∑

n=0

W [n]X[n+ t]e−2πiknN−1

(1)

Here, X is the time-domain signal, and W is a window such
as the Gaussian, Hann, or Hamming window of size N . The
frequency-domain representation Z is a complex-valued, two-
dimensional vector, where t is the temporal and k the frequency
index. Elements in Z are complex-valued scalars, i.e. Z[t, k] =
αeiθ ∈ C, where α ∈ R is the magnitude and θ ∈ [0, 2π[ the
phase.

Although Z is better suited for neural processing than the
corresponding time-domain representation X , it also has its

own drawbacks: the uniform time and frequency resolution for
all frequency bins k does not align with the non-linearities of
the human auditory system [21, 22]. To address this issue,
we employ the constant Q transform (CQT) [7, 23] which pro-
cesses the same number of cycles Q for each frequency and
spaces the frequency bins k geometrically (i.e., higher frequen-
cies are farther apart). Therefore, for high frequencies k, CQT
employs smaller window sizes Nk (and thus higher time reso-
lution), while for lower frequencies, it employs larger window
sizes and thus larger frequency resolution. Thus, instead of us-
ing the STFT, we convert time-domain audio X into a complex-
valued CQT spectrogram:

ZQ[t, k] =
1

Nk

Nk−1∑

n=0

Wk[n]X[n+ t]e−2πiQnN−1
k (2)

Previous work has already shown that magnitude-based CQT
is better suited to voice antispoofing than magnitude-based
STFT [24], which motivates our approach.

Finally, we convert the complex-valued CQT-spectrogram
into a log representation by means of the following transforma-
tion:

C → C (3)

|z|eiθ 7→ max (ϵ,−loge|z|+ c) · α · eiθ (4)

To account for the logarithmic perception of sound level by the
human ear, we log-scale the magnitude of the complex number
while keeping the phase intact. However, loge|z| can be nega-
tive, because loge|z|eiθ = −loge|z|eiθ+iπ , leading to ambigu-
ity. To address this, we apply a lower threshold of ϵ > 0 to en-
sure that the magnitude remains positive. Additionally, to ease
model training, we introduce trainable parameters α, c ∈ R>0

to scale the magnitude. In our experiments, these converge to
approximately α = 0.15 and c = −0.3. To summarize, we uti-
lize CQT followed by eq. (4) to generate complex-valued CQT
log-spectrograms (C-CQT).

3.2. Complex-valued neural networks

Complex-valued neural networks (CVNN) are networks where
both inputs X and weights θ are complex numbers a+ ib ∈ C.
Apart from that, CVNNs rely on many of the same fundamental
components as traditional real-valued ones. For instance, linear
layers, convolutions, and simple recurrent networks like RNN
operate identically in both types of networks. However, more
complex components such as attention and recurrence, such as
GRU [25], need to be adapted, since typical activation functions
like sigmoid, tanh, and softmax cannot be applied directly to
complex-valued scalars [26]. For example, the complex ReLU
function can be implemented as

CReLU(x) = max(0,ℜ(x)) + imax(0,ℑ(x)) (5)

where ℜ and ℑ denote the real and imaginary parts of a complex
number. In supervised classification, class scores y for n classes
can be derived from complex-valued logits z as follows:

softmax(|z|)i = e|zi|∑n
j=1 e

|zj |
(6)

Classes with high probability are represented by logits with a
large magnitude. These models, like their real counterparts, are
trained using gradient descent [26] through the use of Wirtinger
Calculus [27].
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Figure 1: Our proposed complex-valued architecture.

3.3. Proposed Architecture

In order to process complex-valued, frequency-domain audio
input, we use a complex convolutional network. It consists
of four blocks of convolutions, where each block is com-
posed of two-dimensional complex convolutions (kernel size 3,
stride 2 and padding 1), complex ReLU and complex Batch-
Normalisation. This is followed by linear projection, which
consists of three complex-valued linear layers with CReLU
activation and Dropout of 40%. This is followed by two-
dimensional complex time pooling. The output is a two-class
complex vector of shape (B, 2), to which we apply eq. (6) in
order to obtain real-valued class scores. There are two target
classes: class 0, which corresponds to bonafide audio, and class
1, which corresponds to spoofed audio. The input frequency-
domain audio has shape B,F, T where B is the batch-size, F
the number of frequency bins, and T the number of time bins.
The convolutional stack outputs a tensor B,C,L where C is
the number of output channels and L is the aggregated time.
Figure 1 provides an overview.

4. Evaluation
4.1. Datasets

We are utilizing two datasets for our experiments. The first
dataset is the Logical Access (LA) section of the ASVspoof
2019 dataset [28]. This dataset is widely used in related re-
search [4, 5, 6, 9, 10, 11, 12, 13] and is considered one of the
most established anti-spoofing datasets. It includes audio files
that are either genuine human speech recordings (bona-fide)
or manipulated/synthesized audio (spoofed). The spoofed au-
dio files are generated using 19 different Text-To-Speech (TTS)
synthesis algorithms that are considered a threat to the authen-
ticity of human voice in terms of spoofing detection. Therefore,
the spoofed audio files are labeled as “attacks” by ASVspoof.
The dataset consists of 19 attackers, labeled as A1 to A19, and
for each attacker, there are 4914 synthetic audio recordings and
7355 genuine samples.

Furthermore, we utilize the “In-the-Wild” (ITW)

dataset [20], which comprises 37.9 hours of audio recordings,
either spoofed (17.2 hours) or authentic (20.7 hours), obtained
from 58 English-speaking celebrities and politicians via online
video sharing platforms, such as YouTube. It tries to match
the speaking style for each pair of spoofed and authentic
instance to prevent the model from distinguishing spoofs based
on extraneous characteristics (also called “machine learning
shortcuts”), such as speaking style, background noise, or
setting. For instance, for a spoofed speech by Barack Obama,
an authentic speech was also included. Our objective is for the
model to distinguish spoofed audio based on either disfluencies
that indicate poor naturalness or artifacts resulting from the
text-to-speech (TTS) process.

Since our primary concern is the real-world performance of
the models on unseen audio recordings, we train them on the en-
tire ASVspoof dataset (all splits) and assess their generalization
abilities using the ”In-the-Wild” dataset.

4.2. Data-augmentation and Hyperparameters

Previous research has identified a significant learning shortcut
in the ASVspoof 2019 dataset, whereby the duration of silence
in an audio file is highly correlated with its corresponding label.
This correlation has led to an overestimation of anti-spoofing
system performance [19]. To obtain a realistic estimate of the
anti-spoofing model performance, it is crucial to eliminate this
shortcut. We address this issue by following the suggestions
made by related work [19, 30] and trim the beginning and end
silences of an audio file. Moreover, we randomly select a 2-
second segment from the remaining audio to ensure that all au-
dio files have equal length. This prevents our models from using
the presence or position of the cut-off as a new learning short-
cut. We apply this technique to all subsequent analyses.

In addition, inspired by the widespread use of data aug-
mentation in the image domain, we employ the following audio
data augmentations in all subsequent analyses. By doing so, we
further aim to avoid shortcuts, model overfitting, and promote
model generalization.

First, we use Adversarial Retraining [31]. Namely, we em-
ploy the Fast Gradient Sign Method (FGSM) to craft adversarial
examples with a probability of 20% and a magnitude of 0.25%
of the input magnitude and supply these as additional training
examples. This method has been shown to improve model gen-
eralization [31] and regularization [32]. Second, we use audio
augmentations [33] such as room impulse response, frequency
masking, pitch- and timeshift, gain, high, low- and bandpass fil-
ters, polarity inversion, and clipping to diversify the input data
with a probability of 20%. Third, again with a probability of
20%, we partially encode the input using MP3, ulaw, and alaw
codecs to perform compression. Lastly, we add random clips of
noise and music to the audio files with a probability of 5% by
utilizing the MusDB18 [34] and Noise ESC 50 [35] datasets.

We utilize the Adam optimizer with a learning rate of
5 · 10−3 to train all models. The models are trained for 25
epochs with a weight decay of 10−6 and a batch-size of 32. To
prevent overfitting, we employ early stopping with a patience
of 3 epochs and a minimum delta of 5 · 10−4. We imple-
ment the models using Python and PyTorch. For the Constant-
Q Transform (CQT), we use a hop size of 32 samples with
the “Hann” windowing function. We train all models using an
Nvidia DGX-A100 server, which is equipped with eight A100
GPUs, each having a memory of 40GB, and a total server mem-
ory of 1024GB. It features two AMD Rome 7742 processors,
each with 64 cores.
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Table 1: Model evaluation results on the “In-the-Wild” dataset. The results are averaged over three independent runs, with the standard
deviation displayed.

Model Name Feature Type EER Test ITW EER Train Epoch Time (s) Num. Parameters

Proposed Model C-CQT 26.95±3.12 12.382±6.58 276.6±6.5 2,459,492
CRNN Spoof [14] Raw 29.90±4.33 8.103±0.59 177.0±5.0 3,330,562
MesoNet [12] CQT 37.05±3.93 11.496±0.19 187.0±21.2 11,698
RawGat-ST [5] Raw 39.29±2.41 11.802±0.12 402.5±1.1 440,810
RawNet2 [4] Raw 40.00±0.25 11.680±0.02 113.4±5.9 17,648,770
LCNN [14] Mel-Spec 55.07±7.09 21.575±1.82 170.8±12.2 178,306
Deep ResNet [29] Mel-Spec 58.80±0.23 36.21±0.65 192.7±6.8 111,874

Table 2: Ablation study results for the C-CQT feature: full
phase retention, random phase selection, or zero assignment.

Model Name Phase EER Test ITW EER Train

Proposed Model full 26.95±3.12 12.38±6.58
zero 31.29±1.31 5.94±0.37
random 35.79±0.13 8.09±0.18

4.3. Evaluation and Results

We adopt the Equal Error Rate (EER) as the performance met-
ric for our model evaluation, consistent with previous stud-
ies [4, 5, 6, 28, 36]. EER is the point on the Receiver Operating
Characteristic (ROC) curve where the false acceptance rate and
false rejection rate are equal. For each experimental configura-
tion, we conduct three independent trials and report the mean
and standard deviation of the EER. Table 1 summarizes the re-
sults of our proposed model compared to models from related
work. We observe the following: Firstly, our complex-valued
model demonstrates an absolute improvement over related work
by about 3% EER when compared to “raw” features and 10%
EER when using magnitude-based CQT features. Secondly, we
observe the least amount of overfitting, as indicated by the small
gap between the training and testing performance.

4.4. Ablation Study

In order to evaluate the impact of the phase information, we
perform an ablation study where we keep all parameters for our
proposed model, but discard or randomize the phase informa-
tion from the complex spectrogram. Table 2 presents the re-
sults. We observe that the removal of phase information (”zero
phase”) results in a 4% degradation in model performance with
respect to EER. This suggests that the proposed model has in-
deed learned to detect spoofing attacks by utilizing the mis-
match between phase and magnitude information to some ex-
tent. Furthermore, randomizing the phase information causes
an additional 4% decrease in performance with respect to EER.
We presume that this is due to the fact that the model not only
lacks phase information, but also has to cope with a significant
amount of noise when dealing with randomly generated phase
information.

4.5. Explainable AI

Our model allows the application of explainable AI techniques
such as saliency maps [16] and Smooth Grad [17]. These tech-
niques allow us to visualize how our model processes audio in
the frequency domain, thereby enabling us to gain insight into

Figure 2: SmoothGrad [17] applied on an instance from the
ASVspoof dataset.

the decision-making process of our model. To demonstrate the
effectiveness of these techniques, we apply Smooth Grad and
present an exemplary output in Figure 2. Our analysis shows
that the model does not rely on any obvious shortcuts, such as
the duration of silence[19] or other artifacts such as sampling
or ringing issues in the upper frequency bands. Instead, the
model focuses on the speech signal itself, as evidenced by the
red XAI-overlay coinciding with the spectro-temporal bins con-
taining descriptive features.

5. Conclusion and Future Work
This paper introduces a novel approach to voice anti-spoofing,
which involves utilizing complex-valued features and complex-
valued neural networks. This approach is motivated by the fact
that magnitude-based feature extraction discards phase informa-
tion, which is difficult to spoof yet crucial for producing natural-
sounding synthesized speech, thereby constituting a useful in-
put feature to voice anti-spoofing systems.

Building on previous research, we thus propose using the
complex-valued Constant-Q Transform (C-CQT) as a new in-
put feature and suggest a corresponding complex-valued neural
architecture. Our proposed approach not only outperforms pre-
vious related work but also allows for explainability through
established XAI-methods, which is lacking in “raw”-feature-
based models. Through ablation studies, we demonstrate that
our model has effectively learned to use phase information to
distinguish between spoofed and bona-fide audio. These results
indicate the potential of our approach in improving the accuracy
of voice anti-spoofing and advancing the understanding of the
underlying decision-making process.

In summary, we suggest an effective architecture that can be
useful for anti-spoofing purposes. Despite the simplicity of our
current model, it already surpasses the performance of related
works that employ more sophisticated components. We are con-
fident that incorporating further model refinements would be
straightforward and could potentially enhance the ability to de-
tect spoofed voice signals.
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