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Abstract
Long-term respiratory illnesses like Chronic Obstructive

Pulmonary Disease (COPD) and Asthma are commonly diag-
nosed with the gold standard spirometry, which is a lung health
test that requires specialized equipment and trained healthcare
experts, making it expensive and difficult to scale. Moreover,
blowing into a spirometer can be quite hard for people suffering
from pulmonary illnesses. To solve the aforementioned limi-
tations, we introduce MMLung, an approach that leverages in-
formation obtained from multiple audio signals by combining
multiple tasks and different modalities performed on the mi-
crophone of a smartphone to estimate lung function. Our pro-
posed approach achieves the best mean absolute percentage er-
ror (MAPE) of 1.3% on a cohort of 40 participants. Compared
to the reported performances (5%–10% MAPE) on lung health
estimation using smartphones, MMLung shows that practical
lung health estimation is viable by combining multiple tasks
utilizing multiple modalities.
Index Terms: Spirometry, Smartphone, Audio, Speech, Cough

1. Introduction
Pulmonary diseases such as COPD and Asthma are considered
to be the third leading cause of mortality in the world [1, 2].
According to the report by the Global Initiative for Chronic Ob-
structive Lung Disease (GOLD), [3] Spirometry test is the gold
standard when it comes to measuring lung function using the
ratio of Forced Expiratory Volume in 1 second (FEV1) to the
Forced Vital Capacity (FVC) to identifying respiratory diseases
such as COPD [4]. However, it requires medical-grade equip-
ment and trained medical professionals to operate the equip-
ment. Hence, such methods are challenging to scale, expensive,
and lack accessibility. For example, patients wait a longer time
to receive general treatments and diagnostics with the National
Health Services (NHS) in England [5]. Additionally, the wait
time increased post-COVID-19 as spirometry stopped entirely
for around 18 months due to infection control risks [6]. Hence,
the need to explore the potential of using ubiquitous technolo-
gies to predict lung function estimation is becoming important.

Multiple studies proposed using smartphones for lung
health assessment such as, SpiroSmart[7], SpiroCall[8], Mo-
bispiro [9], SpiroConfidence[10], SpiroSonic[11], ExhaleSense
[12], and Ubilung[13]. Thus, showing that it is possible to es-
timate lung function using multiple audio modalities (cough,
speech, vowel, spirometry) collected from a smartphone. How-
ever, two major limitations came to light in the existing works:
(a) the performance obtained is in the range of 5%–10% MAPE
which is slightly higher than the recommended MAPE (less
than 5%) for clinical use, and (b) they have not compared
the performance of different modalities using same methods to

evaluate their utility for lung health assessment.
In this work, we aim to improve the performance of lung

health estimation so that it becomes practical to be used in real
life and in clinical practice. To this end, we collected data
from 40 participants on a smartphone and designed a machine-
learning pipeline that utilizes and combine audio signals ob-
tained from different modalities sourced through various tasks
performed by the participants. The results show that our ap-
proach - MultiModal Lung (MMLung) is effective and obtains
state-of-the-art results in estimating lung health functionality.

In summary, MMLung makes the following contributions:
• A first-of-its-kind benchmarking study to compare different

audio modalities - cough, mobile spirometry, vowels, and
speech using a single framework and investigate their per-
formance for lung health estimation.

• We explore how and if multiple modalities and tasks should
be combined to achieve the best performance - lower MAPE
than the existing works.

• We show that the best-performing task (Long Sentence in
one breath) using speech achieved a MAPE of 7.40%. While
combining all 14 tasks resulted in a MAPE of 1.13% which
comes with a trade-off between the number of tasks and
reaching the best result. However, as performing all the tasks
at once might not be feasible for a user our results also show
that we can obtain a MAPE (<3%) with a combination of
three to five small tasks without involving arduous mobile
spirometry task.

2. Related Work
There have been multiple studies exploring the potential of var-
ious mobile sensors including microphones for lung health as-
sessment. Larson et al. [7] proposed SpiroSmart which utilizes
the smartphone’s built-in microphone as an accurate spirometer
measurement tool. They emphasize that this technology is not
to replace spirometry tests used in hospitals. But, can be used
as a convenient tool to monitor lung health in a non-clinical
environment. SpiroSmart obtained a mean error of 5.1% com-
pared to a clinical spirometer. Another system by Goel et al.
[8] introduced SpiroCall, where they target tested lung func-
tion over a phone call service. They also proposed using a
3D-printed vortex whistle to test the airflow through the sys-
tem. SpiroCall achieved a mean error of 6.2% for lung function
estimation. Both studies suggest that it is possible to use the
smartphone as a spirometry test estimation tool. However, these
studies use 3D-printed whistles and rely on telecommunication
services. Our approach addresses these limitations by combin-
ing different types of audio sounds to achieve state-of-the-art
results without needing external hardware.

ExhalseSense [12] also enforces the idea that using smart-
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phones for lung function estimation is achievable. Their au-
dio signal processing and regression model produced a 7.57%
mean absolute percentage error for lung obstruction approxima-
tion. Saleheen et al. [14] proposed the use of the vowel [a] in
a monosyllabic voice to estimate lung functionality. Comple-
menting their approach, we explore if other vowels [e, i, o, u]
can be used to estimate respiratory health. We also combine
the acoustic features from multiple vowels to reach better out-
comes. Another approach by Chun et al. [15] demonstrates
the possibility of predicting pulmonary obstruction using natu-
ral speech which was recorded by a smartphone. They stated
that their study predicted the FEV1/FVC ratio with a mean ab-
solute percentage error of 8.6%. Moreover, recent research pro-
posed the potential of combining cough and natural speech in
estimating lung function which achieves a mean absolute per-
centage error of 7.2% [13]. However, they also used heart rate
in the feature merging step which requires a wearable device
that might not always be available to an end user.

Overall, the current literature supports the notion that audio
sounds such as cough, vowels, speech, and mobile spirometry
can be used to assess lung health on smartphones. However,
simply using one type of modality provides limited utility as
existing research predicts lung health with a mean absolute per-
centage error ranging from 5.1% to 8.6%. To be useful in real-
ity we would want the mean absolute percentage error to reach
zero [16]. With MMLung we took one step further in achieving
this goal by combining audio signals obtained from different
modalities sourced from multiple tasks. Furthermore, our pro-
posed system only requires a smartphone which ensures that
MMLung is reachable to the masses.

3. Methodology
3.1. Data Collection

The data was collected from 40 participants (20 male, 20 fe-
male) with an age range of 18-85 years old; English speak-
ing from the UK. Among them, 12 were healthy participants,
while the others consisted of seven self-reported COPD pa-
tients, seven self-reported asthma patients, and 14 people with
other long-term conditions. Three devices were used to collect
the data: Google Pixel 6 Smartphone with an app installed for
the data collection, and an Easy on-PC ultrasonic spirometer by
ndd Medical Technologies. We obtained ethics approval for our
study and we are planning to release a copy of the data set in
the future.

The audio data collection from smartphones was conducted
in stereo mode at a sampling rate of 44100 Hz. The data was
saved in the .wav format. The collection took place in a silent
room conditions. The process consisted of collecting data for
four audio modalities i.e. cough, vowels, mobile spirometry,
and speech via a series of tasks from each participant in a sin-
gle session. We asked the participants to perform the follow-
ing tasks: (a) force cough up to 10 times [17]; (b) pronounce
the vowels [a, e, i, o, u] in one breath like [aaaa...] in two-
three iterations; (c) spirometry task on phone by taking a deep
breath and blowing into the microphone until they have expired
all their air; (d) read the Rainbow Passage [18]; (e) describe a
picture to record spontaneous speech for two minutes; (f) read
one short sentence within one breath; (g) read one long sentence
within one breath; (h) describe the room that we are in during
the recording session; (i) read one text full of action words; (j)
read the text that does not contain action words. Note that the
relation between the vowel and International Phonetic Alphabet

(IPA) notation is as follows: a = [A], e =[E], i=[I], o= [O], u= [U]
[19]. Ground truth data were collected using a medical-grade
spirometer by a healthcare professional as per European Res-
piratory Society (ATS/ERS) clinical standards [20]. We also,
quality assessed the blows from the spirometer, rejecting blows
that did not qualify either within or best of 150mls repeatabil-
ity. However, with any objective measure that is reliant on in-
dividual effort, there may always be unforeseen errors (effort-
dependent blows) [21].

3.2. System Design

Figure 1 displays our system design, we will provide a detailed
description of each step below. We utilized various libraries and
tools in our project1, including Python, Pandas, NumPy, SciPy,
Librosa, pyAudioAnalysis, and Scikit-learn [22].

3.2.1. Pre-processing

We started by cleaning the data initially using Audacity to en-
sure data quality. This includes removing noise, such as partici-
pant chatter occurring before and after each recording, to ensure
that the recordings accurately represented the intended task.

In addition to the silence at the beginning and end of an
audio file. Further work involved picking a single cough event
from a series of coughs - one with the highest amplitude and
longest duration. The same was done for the vowel sounds.
Next, we prepare the audio signal for feature extraction. We
start by applying min-max normalization on the signal. Due to
varying phone positions and as tasks were recorded in stereo
mode one of the channels usually has a higher amplitude and
contains more information. We calculate the root mean square
(RMS) to select the channel with the higher amplitude [23, 12].

3.2.2. Feature Engineering Layer

There are three blocks in the feature engineering layer as
shown in Figure 1. Before we start extracting features we
divide the audio into multiple frames of 100 ms with no
overlap. We extracted multiple features from each frame
such as Energy Entropy, Zero Crossing Rate, Energy, Spec-
tral Flux, Spectral Spread, Spectral Entropy, Spectral Cen-
troid, Chroma, Bark Frequency Cepstral Coefficients (BFCCs),
Linear-frequency Cepstral coefficients (LFCCs), Linear Pre-
diction Components (LPCs), Mel-Frequency Cepstral Coeffi-
cients (MFCCs), Magnitude-based Spectral Root Cepstral Co-
efficients (MSRCCs), Constant Q-transform Cepstral Coeffi-
cients (CQCCs), Gammatone Frequency Cepstral Coefficients
(GFCCs), and Rasta Perceptual Linear Prediction Coefficients
(RPLPs). Next, we calculate statistical features such as mean,
standard deviation, skewness, and kurtosis by combining the
features from each frame.

There are six levels for the following: Zero Crossing Rate,
Energy, Energy Entropy, Spectral Centroid, Spectral Spread,
Spectral Entropy, Spectral Flux, and Spectral Rolloff. Four
statistical measures (mean, standard deviation, skewness, and
kurtosis) are computed for all six levels amounting to 192 fea-
tures. Similarly, 52 features are generated for Chroma (13 lev-
els*4 statistical measures). Different coefficient features such
as MFCC contribute 104 features (8*13). In addition, there are
five features representing the whole audio signal. Finally, we
ended up getting 353 features.

Note that each task represents one audio file. To improve

1https://github.com/MohammedMosuily/mmlung
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Figure 1: Flowchart representing Audio signal analysis and processing pipeline. Consenting of the pre-processing stage, feature
engineering layers, and prediction layer and ending with the lung function estimation.

the performance, we explored if merging audio signal infor-
mation from multiple modalities and tasks can help. To this
end, we combined features from different tasks representing a
modality (cough, speech, vowel, mobile spirometry). More than
25 different combinations were tested, such as, combining au-
dio data (features) from all 14 tasks or merging data from all
the vowels-based tasks to achieve the best performance. Table
3 shows the best 12 combinations with our approach.

After the merging block, we would have a large number of
features depending on the chosen combination. To avoid over-
fitting we tested methods for feature selection such as Lasso
Regression. Next, we used the ELI5 library to create an ex-
plainable weight that will be used to rank the selected features
[24]. An example of the selected features is shown in Table 1
which presents a snapshot of the top 15 from the 35 features and
their prediction explainable weights that were used in obtaining
a MAPE of 1.13% (shown in bold) in table 3.

3.2.3. Prediction Layer

In the last layer of our pipeline, we evaluated our data with
multiple machine learning methods such as Linear Regression,
Ridge, Stochastic Gradient Descent, Support Vector, Nu Sup-
port Vector, K-nearest Neighbours, Decision Tree, AdaBoost,
Gradient Boosting, and XGBoost regression methods. We used
Scikit-learn to create the regression models [22]. We used grid
search and explored multiple hyperparameters to obtain the best
results. We did leave one out cross-validation (LOOCV) [25]

Table 1: A snapshot of the top 15 from the 35 features after
merging all the tasks which resulted in MAPE of 1.13%

# Feature Weight

1 Long MSRCC 10 0.1999
2 Long Chroma 13 kurtosis 0.1180
3 Non Action MFCC 10 0.1149
4 [o] Single Level 1 Spectral Entropy mean 0.1106
5 [i] Single Level 2 Zero Crossing Rate kurtosis 0.1070
6 Long MFCC 2 0.1034
7 [i] Single selected channel 0.0747
8 Long Level 5 Spectral Spread skew 0.0671
9 [e] Single Level 5 Spectral Flux mean 0.0644
10 Long Chroma 8 std 0.0629
11 Describe Sth Chroma 13 kurtosis 0.0624
12 Action LFCC 8 0.0619
13 Cough MSRCC 13 0.0577
14 [o] Single Zero Crossing Rate std 0.0512
15 [u] Single Level 3 Spectral Rolloff kurtosis 0.0510

per subject to check the generalization of our model and used
the mean absolute percentage error of the FEV1/FVC ratio as a
metric to compare the performance of different machine learn-
ing methods in estimating lung health function.

4. Results
Existing studies focus on using a single task/modality to do the
lung function estimation such as using the vowel [a] [14], or
spirometry test by blowing into a smartphone [12] and usually
obtaining a MAPE between 5% and 8.5%. To complement ex-
isting studies, we started by experimenting with single tasks.
The results are shown in Table 2. The best-performing task is
reading a long sentence - a MAPE of 7.49% with 28 features
on a Linear Regression model. Participants read the following
long sentence, “The weather today is sunny with lots of wind
and lots of clouds in the sky, which will bring heavy rain and
thunderstorms in the afternoon”. MAPE across all tasks varied
from 7.49 % to 12.35%. The speech modality was followed by
mobile spirometry and a vowel in terms of performance while
cough is the least significant modality. This result provides
the first comparison of different modalities using a baseline ap-
proach and further bolsters the claim that speech can be the most
effective modality to estimate lung health.

The MAPE equation used in this and previous studies is:

MAPE =
1

n

n∑

t=1

∣∣∣∣
At − Ft

At

∣∣∣∣× 100 (1)

Here, At is the actual value for time period t, Ft is the fore-
casted value for time period t, and n is the total number of time
periods. The MAPE measures the average absolute percentage
difference between actual and forecasted values. The closer the
MAPE is to zero, the better the forecast.

Our approach to combining signal information from multi-
ple modalities and tasks is shown in Table 3. The specific com-
bination of tasks provides promising results - MAPE between
1.13% and 6.23% on models trained on Linear, Ridge, and Nu
Support Vector regression methods while the number of features
varied from 35 to 39. The best result is obtained by merging all
14 tasks together - a MAPE of 1.13% with 35 features using
Linear Regression. In fact, the first 11 combinations achieved
a MAPE of less than 5% which shows the effectiveness of our
approach and moves the performance of smartphone-based lung
health assessment closer to practice in the real world.

Additionally, we also observe that some combinations of
tasks especially #2, #4, and #6 are some of the most promising
task combinations for lung health assessment. Primarily, this
shows that a small number of tasks when combined can achieve
very good performance (<3%) compared to doing all the tasks
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Figure 2: Predication performance of FEV1/FVC. Using Linear
Regression achieved 1.13% MAPE when Combining all tasks.

which can be time-demanding and exhausting for a person. For
example, performing all the vowel-related tasks #2 will be eas-
ier than tasks described in #1. Also, combinations #2, #4, and
#6 do not require users to perform mobile spirometry which is
highly usable/desirable as people suffering from pulmonary ill-
nesses and the elderly population finds it difficult to perform
full-blown spirometry.

Our results also signify the power of combining modali-
ties via tasks. For example, cough alone is not a powerful
modality (12.35% MAPE) but a combination of cough with
the vowel sound [i], and reading a long sentence provides a
MAPE of 1.55%. Figure 2 shows the predicted performance
when combining all the tasks and using the Linear Regression
model achieving 1.13% MAPE. It also shows how close is the
prediction to the actual ground truth values.

5. Discussion and Future Work
MMLung achieved excellent results which can help push the
boundaries to make lung function estimation more accurate and
ubiquitous. However, there are various avenues which can be
explored in the future. Firstly, our user study consists of 40 par-
ticipants. In the future, we are planning on collecting more data
from a diverse population. Secondly, we are planning to focus

Table 2: Single-task results show MAPE and mean squared er-
ror, the regression model used, number of features and the task.
The results are ordered according to MAPE.

# Task feat. Model MSE MAPE

1 Long Sentence 28 Linear 0.52% 7.49%
2 Spirometry 29 NuSVR 0.74% 8.68%
3 Vowel [i] 29 Ridge 1.74% 9.22%
4 Vowel [o] 31 Ridge 2.22% 9.99%
5 No-Action Txt 22 Ridge 1.52% 10.21%
6 Describe Room 29 Ridge 1.27% 10.76%
7 Vowel [u] 31 SGD 2.71% 11.12%
8 Desc. Picture 26 SGD 1.43% 11.24%
9 Short Sentence 23 Ridge 1.36% 11.52%
10 Vowel [e] 32 SGD 2.41% 11.54%
11 Action Text 27 Linear 1.34% 11.55%
12 Vowel [a] 33 Ridge 1.69% 11.61%
13 Rainbow Txt 28 SGD 1.66% 11.64%
14 Cough 26 NuSVR 1.57% 12.35%

Table 3: Multi-task combinations results show MAPE and mean
squared error, the regression model used, number of features
and the task. The tasks are ordered according to MAPE.

# Task feat. Model MSE MAPE

1 All Tasks 35 Linear 0.01% 1.13%
2 All Vowels 39 NuSVR 0.02% 1.15%
3 Cough,Spiro.,

Long,[i]
39 Linear 0.02% 1.22%

4 Cough,[i],Long 39 NuSVR 0.03% 1.55%
5 All (No Spiro.) 39 NuSVR 0.03% 1.68%
6 Cough,Long,Short 39 NuSVR 0.10% 2.18%
7 Spiro.,Long,[i] 39 NuSVR 0.05% 2.48%
8 All Speech 39 Ridge 0.07% 3.03%
9 All (No Speech) 39 Ridge 0.14% 3.04%
10 Cough,Spiro.,Long 38 Ridge 0.16% 3.72%
11 Cough, Spiro, [i] 37 Ridge 0.20% 3.87%
12 Long, [i] 38 Ridge 0.34% 5.42%

on exploring the performance of machine learning models for
other metrics such as FEV1 and FVC. Thirdly, we will like to
collect users’ subjective opinions about how they feel about do-
ing different tasks and which type of tasks they would prefer for
doing lung health assessment on smartphones in terms of user
comfort and usability. Finally, our study is currently focused on
the English language and incorporates regional accents from the
UK. In the future, we plan to expand the scope of our research
by testing our methods in additional languages.

6. Conclusion
Many studies suggest that smartphone spirometry could not yet
replace current clinical spirometry devices. However, this study
has demonstrated that personal lung monitoring is a possibil-
ity, at this stage as a screening tool, to enable public awareness
of changes or detection in the early deterioration of their lung
health, an example of this is (KardiaMobile Cardiac Screening)
[26]. The best case scenario will be to have continuous mon-
itoring and reporting to the medical care experts, which could
be effective for an earlier treatment if needed. In this direction,
this paper proposed MMLung an approach to merge audio sig-
nal information from multiple modalities via multiple tasks to
achieve impressive performance for lung function estimation.

We obtained the optimum result with a MAPE of 1.13% by
combining all the tasks. However, as performing all the tasks at
once might not be feasible for a user our results also show that
we can obtain an MAPE (<3%) with a combination of three to
five small tasks without involving mobile spirometry. Our work
is also the first one to compare all modalities - cough, speech,
vowels, and mobile spirometry using a single benchmark setting
and show that speech is the best modality to be deployed for
testing lung functionality with smartphones. Overall, MMLung
takes one step further to make smartphone-based lung health
assessment more accurate and practical.
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