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Abstract

Neural transducer (RNNT)-based target-speaker speech recog-
nition (TS-RNNT) directly transcribes a target speaker’s voice
from a multi-talker mixture. It is a promising approach for
streaming applications because it does not incur the extra com-
putation costs of a target speech extraction frontend, which is
a critical barrier to quick response. TS-RNNT is trained end-
to-end given the input speech (i.e., mixtures and enrollment
speech) and reference transcriptions. The training mixtures are
generally simulated by mixing single-talker signals, but conven-
tional TS-RNNT training does not utilize single-speaker sig-
nals. This paper proposes using knowledge distillation (KD)
to exploit the parallel mixture/single-talker speech data. Our
proposed KD scheme uses an RNNT system pretrained with
the target single-talker speech input to generate pseudo labels
for the TS-RNNT training. Experimental results show that TS-
RNNT systems trained with the proposed KD scheme outper-
form a baseline TS-RNNT.
Index Terms: target-speaker speech recognition, neural trans-
ducer, end-to-end, streaming inference, knowledge distillation

1. Introduction
Although recent advances in end-to-end automatic speech
recognition (ASR) frameworks have boosted ASR performance
in the single-talker case [1–5], it remains difficult to recog-
nize multi-talker speech if multiple voices are overlapped [6].
Target-speaker ASR (TS-ASR) [7, 8], which recognizes only
the target speaker’s speech from a mixture, is a promising tech-
nology for developing user-dependent voice interactive systems
including smart speakers, smartphones, smartwatches, etc. In
this paper, we focus on improving the TS-ASR performance.

One conventional approach to realizing TS-ASR is to use
a cascade of a target speech extraction (TSE) frontend with an
ASR backend [9–14]. First, the TSE frontend extracts the target
speaker’s voice from the speech mixtures by utilizing a speaker
embedding that characterizes the target speaker. This embed-
ding is derived by processing the enrollment utterance of the
target speaker in a speaker encoder module. Then, the speech
extracted by the TSE module is fed to the ASR module to obtain
the target speaker’s transcription.

In the training step of TSE, signal-level loss is computed
using the estimated target speaker’s speech and the reference
clean speech of the target speaker. Thus, TSE training needs
parallel data consisting of mixtures and the target speaker’s ref-
erence/enrollment speech. In the inference step, the cascade
approach improves the TS-ASR performance. However, the ex-
tra computation costs of the TSE module are a critical barrier to
quick response, especially for streaming operation.

Recently, [7, 8] proposed an integrated TS-ASR frame-
work that incorporates the TSE essence (i.e., conditioning on
speaker embedding) into a neural transducer (RNNT) [15]
model, called TS-RNNT. TS-RNNT can identify and transcribe
the target speaker’s speech while ignoring the interfering speak-
ers’ voices, by conditioning an RNNT model on the target
speaker embedding. The computation cost is equivalent to that
of a conventional RNNT model.

TS-RNNT training requires the input speech signals, i.e.,
mixtures and target speaker’s enrollment utterances, and the tar-
get speaker’s transcription. Although TS-RNNT training does
not require single-talker speech, such clean source data is gen-
erally used to generate the simulated mixtures. Thus the use
of single-talker speech is logical for TS-RNNT training. How-
ever, prior works [7, 8] did not directly utilize the plain single-
talker speech for TS-RNNT training. We expect that we could
improve TS-ASR performance further if we could utilize the
parallel mixture/target speech for TS-RNNT training.

The TS-RNNT system is an end-to-end TS-ASR system
that directly performs recognition without explicitly extracting
the target speech signal. Therefore, it is not straightforward to
utilize parallel mixture and single-talker speech data because it
is not possible to define a signal-level loss term as is used in
TSE. As an alternative, in this paper, we propose a knowledge
distillation (KD)-based training framework to exploit the paral-
lel mixture/single-talker speech data.

We generate pseudo labels (posteriors) by processing the
single-talker speech with a teacher RNNT model trained on
single-talker data. We then train the student TS-RNNT model
using a multi-task loss consisting of the standard RNNT loss
and a KD loss. The KD loss is the cross-entropy loss between
the posteriors computed with the TS-RNNT (i.e., student) and
the pseudo labels. The teacher’s guidance in the KD loss may
help the student learn posteriors that are more robust to the in-
terference speakers. Thus, we expect that the TS-RNNT trained
with the proposed KD will improve the TS-ASR performance.

We conduct experiments on parallel mixture/single-talker
speech data, to compare our TS-RNNT proposal, trained with
the proposed KD, called TS-RNNT+KD, with conventional TS-
RNNT in both offline and streaming modes. Experiments show
that TS-RNNT+KD outperforms the variant without KD, espe-
cially for streaming TS-ASR.

2. Related Work
While the KD framework is generally used to relieve perfor-
mance degradation in model compression [5, 16, 17], some pre-
vious studies apply it for other purposes [4, 18–28]. In particu-
lar, the KD frameworks of [22,23,26] have been used for multi-
talker ASR systems, where a single-talker ASR system with the
target speaker’s speech input is used to generate pseudo-labels.
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(b) Integrated system 
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Figure 1: Overview of (a) cascaded and (b) integrated TS-ASR
systems. X target is only used to train the cascaded system.

These works dealt with “separation” based systems that recog-
nize the speech of all speakers in a mixture and identification
of a target speaker is not considered. These frameworks re-
quire Permutation Invariant Training loss, making the training
more complex due to the multiple decoders within the models as
well as RNNT-based multi-talker ASR systems [29, 30]. They
explored KD for neural network-Hidden Markov Model hy-
brid [22], and attentional encoder-decoder [23, 26] multi-talker
ASR-based systems, and then only for offline settings.

In this work, we use KD for TS-RNNT, which simplifies the
training as there is only a single target speaker. Thus TS-RNNT
can naturally avoid output-speaker ambiguity and identify the
target speaker. We use the approach developed for more recent
RNNT systems, which allows the exploration of KD for stream-
ing models.

3. Methods
In this section, we first explain the cascaded TS-ASR, i.e.,
TSE+RNNT, and the integrated TS-ASR, i.e., TS-RNNT, which
are the foundations of this work. Then we introduce our pro-
posed approach, i.e., TS-RNNT+KD.

Let Xmixture =
[
xmixture
1 , ..., xmixture

T ′
]
∈ RT ′

be the single
microphone input speech mixture of duration T ′; it includes the
target speech X target, interfering speakers’ voices X interference,
and background noise Xnoise. Y target =

[
ytarget
1 , ..., ytarget

U

]
∈

RU is the sequence of tokens of length U associated with the ut-
terance spoken by the target speaker, where ytarget

u ∈ {1, ...,K}.
K is the number of tokens in the vocabulary.

3.1. Cascaded TS-ASR (TSE+RNNT)
Figure 1 (a) is a diagram of the cascaded TS-ASR system,
which is composed of the TSE and ASR modules described be-
low.

3.1.1. TSE frontend
In this work, we adopt the time-domain TSE module [12, 13]
that extracts X̂ target from Xmixture using enrollment speech
Aclue. First, we extract the embedding of the target-speaker,
htarget, from Aclue using speaker encoder fSpk-Enc(·), which con-
sists of a multi-layer neural network followed by a linear layer
and a time-average pooling layer. Then, we use a speech ex-

traction network fSE(·), which consists of TSE encoder and
decoder, to extract the target speech given the embedding,
htarget. The above operations, which yield the estimated target
speaker’s speech signal X̂ target, are defined as follows:

htarget = fSpk-Enc(Aclue; θSpk-Enc), (1)

X̂ target = fSE(Xmixture,htarget; θSE). (2)

In this work, we utilize the Hadamard product between htarget

and the first encoder layer output of fSE(·). The parameters
θTSE ≜ [θSpk-Enc, θSE] are jointly optimized with the scale-
invariant source-to-noise ratio (SI-SNR) loss LTSE [31] using
X̂ target and reference X target.

3.1.2. ASR backend (RNNT)

We use an RNNT-based ASR model [15], which can perform
streaming ASR, for the backend module. RNNT learns the
mapping between sequences of different lengths. First, in the
training step, X target′ consisting of X target with background
noise Xnoise to enhance system robustness is transformed into
acoustic features using feature extractor fFE(·). Then, the fea-
tures are encoded into a length T sequence, HASR, via ASR
encoder network fASR-Enc(·). Next, Y target is also encoded into
HPred via a prediction network fPred(·). HASR and HPred are
fed to a joint network, f Joint(·), to compute the token posterior
probabilities, Ŷ RNNT

1:T,1:U ∈ RT×U×K . The above operations can
be formularized as follows:

HASR = fASR-Enc(fFE(X target′); θASR-Enc), (3)

HPred = fPred(Y target; θPred), (4)

Ŷ RNNT
1:T,1:U = Softmax

(
f Joint(HASR,HPred; θJoint)

)
, (5)

where Softmax(·) performs a softmax operation. All the param-
eters θRNNT ≜ [θASR-Enc, θPred, θJoint] are optimized with RNNT
loss LRNNT using Ŷ RNNT

1:T,1:U and Y target.

For training, we use single-talker speech X target′ consisting
of X target mixed with Xnoise and the transcript Y target. Note that
we do not perform joint training of the TSE and RNNT models.
In the decoding step, we use X̂ target extracted from the TSE.

3.2. Integrated TS-ASR with RNNT (TS-RNNT)

Figure 1 (b) is a schematic diagram of the TS-RNNT system.
TS-RNNT deals with the target speaker embedding htarget′ to
inform which speaker in the mixture to decode; it can directly
transduce the mixture to yield the target speaker’s transcrip-
tion. TS-RNNT encoder fASR-Enc′(·) receives fFE(Xmixture) and
htarget′ extracted from fFE(Aclue) via fSpk-Enc′(·) of TS-RNNT,
and outputs HASR′

. These functions are defined as follows:

htarget′ = fSpk-Enc′(fFE(Aclue); θSpk-Enc′), (6)

HASR′
= fASR-Enc′(fFE(Xmixture),htarget′ ; θASR-Enc′). (7)

htarget′ and the first layer ASR encoder output are multiplied as
the Hadamard product within fASR-Enc′(·). The prediction and
joint networks are the same as in the standard RNNT of 3.1.2,
and TS-RNNT also outputs the posterior probabilities in ten-
sor format Ŷ TS-RNNT

1:T,1:U ∈ RT×U×K . All networks with parame-
ters θTS-RNNT ≜ [θSpk-Enc′ , θASR-Enc′ , θPred, θJoint] are jointly opti-
mized by using RNNT loss LRNNT.

For decoding, we enroll htarget′ extracted from fFE(Aclue)
in advance. Then, the acoustic feature of the mixture signal,
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Step 1: Train teacher RNNT using 
single-talker ASR data in Table 1 (a)

Step 2: Train student TS-RNNT using TS-ASR data in Table 1 (b)
and teacher RNNT with single-talker speech input

copy

Figure 2: Schematic diagram of TS-RNNT+KD for TS-RNNT. The training process consists of two steps: 1) pretraining the teacher
RNNT using single-talker ASR data with LRNNT as the loss, and 2) training the student TS-RNNT using the mixture and target speaker’s
transcription pair data (TS-ASR data) and the pre-trained RNNT outputs with multi-task loss LRNNT+KD combining LRNNT and LKD.

Table 1: Data generation setup. The number of utterances in (a) is double of (b) due to the single-speaker case of (b).

dataset mixture type SIR
[dB]

SNR
[dB]

#speakers
(train set / dev set)

#mixtures or utterances
(train set / dev set)

(a) training data for ASR backend (RNNT) 1 speaker and noise - 0 - 20 3054 / 160 400,000 / 10,000
(b) training data for TSE and TS-RNNT 2 speakers and noise -5 - 5 0 - 20 3054 / 160 200,000 / 5,000
(c) evaluation data 2 speakers and noise -5 - 5 0, 5, 10, 15, 20 30 6, 000× 5 = 30, 000

fFE(Xmixture), is directly input to the ASR encoder together
with htarget′ , and the decoder yields the TS-ASR results. Thanks
to the removal of the TSE frontend module, TS-RNNT can per-
form TS-ASR faster than the cascaded system, while its compu-
tation cost equals that of basic RNNT. TS-RNNT training uses
the target speakers’ voices and the transcriptions, which are ar-
guably easier to collect for real recordings; it does not need
clean target speakers’ speech data as references for TSE mod-
ule training.

3.3. Proposed KD for TS-RNNT (TS-RNNT+KD)
TS-RNNT does not require single-talker speech in the training
step. However, speech mixtures are generally simulated us-
ing single-talker speech data. Therefore, target single-speaker
speech X target is naturally available for training. In this paper,
we exploit the parallel speech data, i.e., X target and Xmixture,
using a KD framework.

The schematic of our proposed KD approach of exploit-
ing parallel speech data for TS-RNNT is illustrated in Fig-
ure 2. Our proposed KD for TS-RNNT training consists of two
steps; 1) building a single-talker teacher model and 2) distilling
knowledge from the pretrained single-talker RNNT with target
speaker’s speech input to a TS-RNNT model. The procedure is
detailed as follows.

First, we train single-talker RNNT as a teacher model us-
ing X target′ , which consists of X target mixed with Xnoise, and
Y target; the RNNT is optimized by LRNNT. We assume that the
pretrained single-talker RNNT with single-talker speech input
can better align the speech and the transcriptions, thus provid-
ing more reliable posteriors than those of TS-RNNT. Then, we
train a student TS-RNNT using the mixture, and the pretrained
teacher RNNT outputs Ŷ RNNT

1:T,1:U . This is achieved by feeding
the single-talker speech X target′ to the pretrained single-talker
RNNT as the teacher. In this stage, we freeze the parameters
of the single-talker RNNT model. We train the student model
using multi-task loss LRNNT+KD = LRNNT+λLKD, where LRNNT

is computed using Ŷ TS-RNNT
1:T,1:U and Y target , and LKD is the cross-

entropy loss between Ŷ RNNT
1:T,1:U and Ŷ TS-RNNT

1:T,1:U . λ is a hyperpa-
rameter for balancing the losses between LRNNT and LKD. KD
loss is defined as follows:

LKD = −
T∑

t=1

U∑

u=1

K∑

k=1

ŷRNNT
t,u,k log ŷTS-RNNT

t,u,k , (8)

where ŷRNNT
t,u,k and ŷTS-RNNT

t,u,k correspond to the k-th class proba-
bility of Ŷ RNNT

1:T,1:U and Ŷ TS-RNNT
1:T,1:U at the t-th time and u-th label

steps, respectively. The KD loss LKD replaces the signal-level
loss on the TSE output of cascade signals when there is no ex-
plicit target speech signal estimation.

4. Experiments
4.1. Data
For the evaluation, we used the Corpus of Spontaneous
Japanese (CSJ) [32] and the CHiME-3 corpus [33] to simulate
the mixture. The details are shown in Table 1. The mixture
consists of speech signals taken from the CSJ corpus, with back-
ground noise taken from the CHiME-3 corpus at signal-to-noise
ratio (SNR) between 0 and 20 dB. The training data contains
samples totaling 800 hours. The overlap ratio of the mixtures
in both training and evaluation datasets was about 89% on av-
erage. The speakers between training, development, and evalu-
ation datasets are different. In this paper, we adopt 3262 char-
acters for the ASR tasks. We evaluated performance in terms
of character error rate (CER) due to the ambiguity of Japanese
word boundaries.

4.2. System configuration of TSE module
We adopted a Conv-TasNet [31]-based time-domain Speaker-
Beam structure as a TSE frontend [12, 34]. The details of the
implementation are similar to those in [12]. In this work, we
trained offline and streaming TSE models. All TSE models
were trained with dataset (b) in Table 1. Note that the con-
volution and global layer normalization of offline TSE were re-
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Table 2: Comparisons of baseline cascade, baseline integrated, and proposed TS-ASR systems. The system ID uses the following
notations, “B”, “P”, “O” “S”, for baseline, proposed, offline, and streaming, respectively.

System λ ID CERs [%] of offline systems on each SNR ID CERs [%] of streaming systems on each SNR
20dB 15dB 10dB 5dB 0dB Avg. 20dB 15dB 10dB 5dB 0dB Avg.

TSE+RNNT - BO1 7.9 8.8 11.1 18.3 36.3 16.5 BS1 16.8 18.6 23.8 35.6 56.3 30.2
TS-RNNT 0.0 BO2 8.6 9.3 11.4 17.3 32.7 15.8 BS2 11.9 13.0 16.0 23.8 41.2 21.2

TS-RNNT+KD
(proposed)

1.0 PO1 8.9 9.5 11.6 17.5 34.2 16.3 PS1 11.6 12.9 15.8 24.2 42.2 21.4
0.5 PO2 8.5 9.1 11.2 16.7 33.0 15.7 PS2 11.7 12.7 15.7 23.7 41.4 21.0
0.1 PO3 8.1 8.7 10.7 16.1 31.4 15.0 PS3 11.0 12.2 15.0 22.4 39.8 20.1
0.01 PO4 8.5 9.1 11.0 17.0 32.1 15.5 PS4 10.2 11.3 14.2 21.7 38.7 19.2

0.001 PO5 8.8 9.4 11.3 16.8 31.7 15.6 PS5 10.7 11.8 14.7 22.3 39.2 19.7

placed with causal convolution and channel-wise layer normal-
ization in the streaming one, respectively. The algorithmic la-
tency of the streaming TSE model is 1.25ms, which is negligible
in terms of ASR decoding latency. The source-to-distortion im-
provements in offline and streaming TSE models were 15.1dB
and 11.1dB, respectively, which mirrors the tendency reported
in prior separation studies [31].

4.3. System configuration of ASR module
We used an 80-dimensional log Mel-filterbank as the input fea-
ture of ASR models. SpecAugment [35] was applied to the
feature during training. We investigated two versions of (TS-
) RNNT. First, we tested with an offline system consisting of
the same encoder architecture as Conformer (L) [1] with a
kernel size of 15. The ASR encoder contains two-layer 2D-
convolutional neural networks (CNNs) followed by 17 Con-
former blocks. The stride sizes of both max-pooling layers at
each CNN layer were set to 2×2. The prediction network had a
768-dimensional uni-directional long short-term memory layer.
The joint network consisted of a 640-dimensional feed-forward
network and output the posterior probabilities. The speaker en-
coder for TS-RNNT had the same architecture as the ASR en-
coder, while the number of blocks was reduced from 17 to 6.

We also performed a streaming experiment, and compared
our proposed variant with a streaming system that used a sim-
ilar configuration as the offline system except that the ASR
encoder is replaced by the streaming Conformer encoder [3].
We adopted causal depthwise convolution and layer normal-
ization for the streaming Conformer encoder that was trained
with an attention mask strategy as in [3]. The history and cur-
rent chunk sizes of streaming Conformer were set to 68 and
60 frames, respectively. Thus the average latency was 330ms
(= 600ms/2 + 30ms).

“RNNT” and “TS-RNNT” were trained with the single-
talker data (a) and the mixture data (b) in Table 1, respectively.
The parameters of offline Conformer model were randomly ini-
tialized. The streaming Conformer parameters were initialized
with those of a trained offline Conformer. We used the Adam
optimizer with 25k warmup for a total of 100 epochs, and all
models were trained using RNNT loss. The minibatch size
was set to 64 in all experiments. For decoding, we performed
alignment-length synchronous decoding with beam width of
8 [36]. We used the Kaldi and ESPnet toolkits [37, 38] for
all implementation, data preprocessing, training, and evaluation
processes.

4.4. Results
4.4.1. Baseline TSE+RNNT vs. Baseline TS-RNNT
First, we compare the baseline cascade system B*1 with base-
line integrated systems B*2 for offline and streaming modes.
The left and right blocks of Table 2 show the CERs under each
SNR condition of the offline and streaming systems, respec-
tively. Although the offline cascade system (BO1) contains the

strong TSE model, the offline integrated system (BO2), i.e., TS-
RNNT without any frontend module, achieves comparable or
better CERs than BO1. We also compare the streaming cas-
cade system (BS1) with the streaming integrated system (BS2).
The CERs of BS2 are much better than those of BS1 under all
conditions. The reason is that the performance of BS1 heavily
depends on the quality of the TSE output. The TS-RNNT could
avoid the performance degradation caused by using the stream-
ing TSE module. Hereafter, the TS-RNNTs (BO2 and BS2) are
regarded as the offline and streaming baseline TS-ASR systems,
respectively.

4.4.2. Baseline TS-RNNT vs. Proposed TS-RNNT+KD
Next, we compare the baseline TS-RNNT systems (BO2 and
BS2) with the proposed systems “TS-RNNT+KD” (PO* and
PS*), which were trained with LRNNT+KD described in 3.3. The
CERs under each SNR condition are shown in Table 2. The
results of offline and streaming TS-RNNT+KD are denoted as
“PO*” and “PS*”, respectively.

The offline experiment shows that the offline system PO3
achieved the best recognition performance among the TS-
RNNT+KD system by tuning the hyperparameter λ = 0.1 on
the development set. The averaged CER of PO3 was better than
that of BO2 while retaining the decoding speed. We performed
the MAPSSWE significance test [39], and the differences of the
CERs between BO2 and PO3 under all conditions were statis-
tically significant, p < 0.001. The relative CER reduction was
5.1% on average.

The streaming experiment shows that the proposed stream-
ing system PS4 (λ = 0.01) greatly outperforms the baseline
system BS2. The relative CER reduction between the inte-
grated system BS2 and the proposed system PS4 was 9.4%,
and the differences under all conditions were also statistically
significant (p < 0.001) by performing MAPSSWE signifi-
cance test. These results show the effectiveness of our proposed
loss term LRNNT+KD in exploiting parallel mixture/single-talker
speech data for TS-RNNT.

5. Conclusion
We have proposed a KD framework that allows us to exploit the
parallel mixture/single-talker speech data for improving an end-
to-end TS-ASR model, called TS-RNNT. We train a teacher
RNNT with single-speaker speech and transcription. The pre-
trained model with target single-talker speech input is used to
obtain a clearer posterior of the target speaker than is possi-
ble with the conventional TS-RNNT. Then the posterior and the
TS-RNNT output are used for KD loss computation. The pos-
terior of the single-talker ASR with the target speaker’s speech
input guided the TS-RNNT output to behave similarly, result-
ing in improved TS-ASR performance. Our proposed system
TS-RNNT+KD offers better performance than TSE+RNNT and
TS-RNNT in both streaming and offline settings. The improve-
ment is particularly significant in streaming operation.

902



6. References
[1] A. Gulati, J. Qin, C. Chiu, N. Parmar, Y. Zhang, J. Yu,

W. Han, S. Wang, Z. Zhang, Y. Wu, and R. Pang, “Conformer:
Convolution-augmented Transformer for speech recognition,” in
Proc. of INTERSPEECH, 2020, pp. 5036–5040.

[2] T. N. Sainath, Y. He, A. Narayanan, R. Botros, R. Pang, D. Ry-
bach, C. Allauzen, E. Variani, J. Qin, Q.-N. Le-The, S. yiin Chang,
B. Li, A. Gulati, J. Yu, C.-C. Chiu, D. Caseiro, W. Li, Q. Liang,
and P. Rondon, “An efficient streaming non-recurrent on-device
end-to-end model with improvements to rare-word modeling,” in
Proc. of INTERSPEECH, 2021, pp. 1777–1781.

[3] X. Chen, Y. Wu, Z. Wang, S. Liu, and J. Li, “Developing real-
time streaming Transformer Transducer for speech recognition on
large-scale dataset,” in Proc. of ICASSP, 2021, pp. 5904–5908.

[4] G. Kurata and G. Saon, “Knowledge distillation from offline to
streaming RNN Transducer for end-to-end speech recognition,”
in Proc. of INERSPEECH, 2020, pp. 2117–2121.

[5] S. Panchapagesan, D. S. Park, C. Chiu, Y. Shangguan, Q. Liang,
and A. Gruenstein, “Efficient knowledge distillation for RNN-
Transducer models,” in Proc. of ICASSP, 2021, pp. 5639–5643.

[6] J. Barker, S. Watanabe, E. Vincent, and J. Trmal, “The fifth
’CHiME’ speech separation and recognition challenge: dataset,
task and baselines,” Proc. of INTERSPEECH, pp. 1561–1565,
2018.

[7] T. Moriya, H. Sato, T. Ochiai, M. Delcroix, and T. Shinozaki,
“Streaming target-speaker ASR with Neural Transducer,” in Proc.
of INTERSPEECH, 2022, pp. 2673–2677.

[8] ——, “Streaming end-to-end target-speaker automatic speech
recognition and activity detection,” IEEE Access, vol. 11, pp.
13 906–13 917, 2023.
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