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Abstract
As the phonetic and acoustic manifestations of laughter in con-
versation are highly diverse, laughter synthesis should be capa-
ble of accommodating such diversity while maintaining high
controllability. This paper proposes a generative model of
laughter in conversation that can produce a wide variety of
laughter by utilizing the emotion dimension as a conversational
context. The model comprises two parts: the laughter “phones
generator,” which generates various, but realistic, combinations
of laughter components for a given speaker ID and emotional
state, and the laughter “sound synthesizer,” which receives the
laughter phone sequence and produces acoustic features that re-
flect the speaker’s individuality and emotional state. The re-
sults of a listening experiment indicated that conditioning both
the phones generator and the sound synthesizer on emotion di-
mensions resulted in the most effective control of the perceived
emotion in synthesized laughter.
Index Terms: laughter synthesis, generative model, language
model of laughter, emotional conditioning

1. Introduction
Laughing is a basic and essential emotional behavior for hu-
mans. Nevertheless, almost all of the conversational agents that
interact with humans do not laugh. Part of the reason for this is
attributed to the fact that we ourselves do not well understand
why, when, and how we laugh. A recent study on conversa-
tional robots by a Kyoto-U team aimed at the positive effect of
the robot’s laughter on empathy [1]. By focusing on “shared
laughter,” they cleared the when problem. For the how problem,
however, they avoided laughter synthesis and randomly picked
one from the pools of “mirthful” or “social” laughs.

The current laughter synthesis study focuses on how con-
versational agents should laugh. Laughter synthesis is an
emerging technology and is gaining importance as the human-
agent interaction becomes more advanced and popular in our
daily lives [2, 3, 4, 5, 6, 7]. A large part of previous work has
employed a similar framework to text-to-speech systems. An
open problem here is how to construct input sequences for the
synthesizer. As the phonetic structure and its functional aspects
of laughter in conversation has not been fully understood, most
previous work simply used exemplars of natural laughter for
input, which limits flexibility. Recent research in non-speech
vocalization synthesis [8] also points to the need for some kind
of “language model”.

This paper proposes a generative model of laughter in con-
versation that can produce a wide variety of laughter. A high-
lighted feature is the “language model” of laughter, which
serves as a laughter sequence generator. This model generates
various but realistic combinations of laughter components for a

given speaker ID and emotional state. The generated sequence
is then fed into the laughter “sound synthesizer,” which pro-
duces acoustic features that reflect the speaker’s individuality
and emotional state.

In this paper, we will be using specific laughter-related ter-
minology, following to [9]. A “laughter episode” will refer to
a series of acoustic events that correspond to exhalation or in-
halation. A “bout” will refer to an event that corresponds to an
exhalation and is composed of one or more laughter calls. A
“call” will be used to describe an individual unit of laughter,
analogous to a syllable. Therefore, a typical bout “hahaha” is a
3-call bout.

2. Morphology of laughter sounds
A typical method for collecting laughter data has been induction
by funny movies [10, 11]. Provine criticized past studies for fo-
cusing solely on audience-oriented, passive laughter [12]. He
argued that laughter is social and that speakers actually laugh
more than listeners. Since we are interested in laughter in agent-
human interaction, we need to collect laughter that occurs nat-
urally in conversation. In this study, we used the Online Gam-
ing Voice chat Corpus (OGVC) [13], a speech corpus contain-
ing spontaneous dialogue during massively multiplayer online
role-playing games (MMORPGs), which has a larger number
of laughs than other Japanese conversational corpora used in
emotion studies.

Bout- and call-level annotation was performed for the top
three speakers with the highest frequency of laughter in OGVC.
An example of the annotation is shown in Fig. 1. The annotation
has a hierarchical structure: Bouts and inhalation sounds that
comprise each laughter episode were annotated, as well as calls
that comprise each bout.

The consonant and vowel of each call were transcribed as
a romanization of Japanese syllable, rather than in a phonetic
way. Therefore, laughter vowels are classified into one of a,
e, i, u, or o. The proportions of vowels are shown in Fig. 2.
The most common vowel was /u/, followed by /a/. However,
these are not contrastive, and most laughter sounds are realized
around the mid central vowel [@].

In addition to consonants and vowels, phonetic variants, in-
cluding unvoiced (e.g. hu

˚
), nasal (e.g. hũ), and consonant pro-

longation (e.g. h:u), were also transcribed. Among them, the
voicelessness of laughter sound has received much attention due
to its functional importance. For example, voiced laughter in-
duces significantly more positive emotional responses in listen-
ers than unvoiced laughter does [14].

The proportion of bout length (number of calls) is shown in
Fig. 3. It is worth noting that the proportion of single-call bouts
is surprisingly large. The proportion of unvoiced calls in single-
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Figure 1: Bout- and call-level annotation of laughter.
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Figure 2: Vowel proportions of calls. Each darker color stands
for voiced, and lighter color for unvoiced.
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Figure 3: Proportions of the number of calls per bout.

call bouts (55.4 %) is significantly larger than that of multi-call
bouts (18.7 %). This suggests that single-call bouts tend to be
accompanied by negative emotions [14].

Individual inhalation sounds were identified as h (unvoiced)
or H (voiced), and annotated at the same tier as bouts. In-
halation sounds often accompany vocal fold vibration (voiced),
some of which constitute a main part of a laughter sound. This
voiced/unvoiced distinction is crucial because of its relation to
perceived emotion. Arimoto et al. [7] showed that laughs con-
taining voiced inhalation sounds tend to be perceived as more
pleasant and aroused. Voiced inhalation sounds are also im-
portant in characterizing the individuality of laughing speakers.
For the top seven OGVC speakers with the highest frequency
of laughter, the proportion of episodes with mid-laugh voiced
inhalations is less than 1 % for two speakers, around 10 % for
three speakers, and 21 % and 27 % for the remaining two speak-
ers. This implies that there are speakers who almost exclusively
use egressive laughter, as well as those who frequently produce
ingressive laughter.

3. Emotion perception from laughter
The morphological variation of laughter depends on its dis-
course and social context. However, it is difficult to encode
such contexts in a comprehensive and adequate way. As a first-
order approximation, this study attempts to use the speaker’s
emotion perceived from laughter as an explanatory variable for
modeling laughter forms [7].

This requires an evaluation of the perceived emotion for the
laughs in the corpus. For this purpose, emotion categories such
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Figure 4: Distribution of the ground-truth pleasantness and
arousal dimensions evaluated for laughter sounds. Points are
jittered to avoid overplotting of laughters with identical values.

as “big six” emotions [15] seem virtually useless. In this study,
we annotated the emotion perceived from laughter with two
emotion dimensions, pleasantness and arousal. Dimensional
descriptions of emotions have a long history and are well es-
tablished in psychology. A number of studies have stated that
two or three dimensions are sufficient to account for a good por-
tion of emotional variation. Among all, the pleasantness (also
known as valence) and arousal (also known as activation) di-
mensions have been regarded as fundamental [16].

Prior to the emotion annotation, the first author checked
the laughter sounds of a male speaker 04 MSY and a female
speaker 06 FWA, then filtered out subtle or less audible ones,
which yielded 125 and 100 laughter episodes for the two speak-
ers as our laughter dataset.

The two authors individually annotated the perceived pleas-
antness (1: extremely unpleasant, 7: extremely pleasant) and
arousal (1: extremely sleepy, 7: extremely aroused). The
ground-truth values were obtained by averaging them. Figure 4
shows the distribution of the emotion dimensions for the two
speakers. Most laughter sounds were evaluated as more pleas-
ant and more aroused than neutral (4). Mean pleasantness and
arousal were 5.86 and 5.19 for the male speaker 04 MSY, and
5.95 and 5.78 for the female speaker 06 FWA.

4. Phones generator: The “language
model” of laughter

Contrary to the notion that laughter sounds have a homoge-
nious structure such as “hahaha,” “hehehe,” or “huhuhu,” there
are so many variations that a closed lexicon of laughter cannot
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Figure 5: Laugh length distribution (points) and its probabilis-
tic model with Poisson regression. Points are horizontally jit-
tered to avoid overplotting.

be defined. At the same time, we barely hear laughter sounds
such like “hahohaho,” which implies that there are some con-
straints that prescribe possible combinations of laughter calls.
Provine [12] suggested biological constraints against producing
such mixed-call laughs, but he also pointed out that one can
easily switch call types in mid-laugh, as in “hahahoho.” His ob-
servation implied the existence of some laughter grammar, but
he did not discuss a computational model of laughter calls that
could be applied to laughter synthesis.

A desired laughter language model should not only regu-
late such possible combinations (as opposed to the random ar-
rangement [7]), but also account for morphological preferences
related to discourse and social context. As described in Sect. 2,
the length of laughter is related to its emotion. Therefore, we
modeled the length first, then the components. Hereafter, we
regard either a call or a single inhalation as a component and
refer to each component as a “phone.” For example, the phone
sequence corresponding to the second laughter episode in Fig. 1
is “H hu hu H hu H H H hu

˚
hu
˚

hu
˚

H.”
Figure 5 shows the distribution of the laugh length (num-

ber of phones) versus pleasantness by black points. As these
could be modeled by a Poisson regression, the fitted mean pa-
rameter λ (green line) and probability mass function (red bars)
are overlaid (here the arousal value was set equal to the pleas-
antness value for simplicity). A generalized linear model with
Poisson distribution was obtained through variable selection us-
ing AIC (Akaike Information Criterion) [17]. The fitted laugh
length model was as below:

log(λi) = b+ 0.527xple
i + 0.750xple

i xaro
i , (1)

yi ∼ Pois(λi), (2)

where yi is the length of i-th laughter, xple
i and xaro

i are the
pleasantness and arousal dimensions, whose range is linearly
transformed from [1, 7] to [−1, 1], and b is the speaker specific
baseline (1.433 for 04 MSY, 0.936 for 06 FWA).

In the generation phase, the decision to stop generating is
determined dynamically and randomly. Here we define Pend(n)
as the probability that the n-th generated phone is the last one:

Pend(n) =
f(n;λ)

1− F (n− 1;λ)
, (3)
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Figure 6: An excerpt from generated laughter phones (10 draws
per condition). See the multimedia file for the complete list.

where f(k;λ) and F (k;λ) are the probability mass function
and cumulative distribution function of Pois(λ), respectively.
For each generated phone, an “end-of-laughter” is drawn ac-
cording to Pend(n). This ensures that the length distribution of
generated laughs follows the Poisson distribution, whose mean
is determined by Eq. (1).

Thirty-two different phones appeared in the laughter dataset
described in Sect. 3. By replacing phones that appeared only
once (e.g. h:a, hi

˚
, na) with similar ones, we obtained a phone

list comprising 22 different calls and inhalations. In the model-
ing, phone sequences that constitute each laughter episode were
converted into a sequence of 64-dimensional embedding vec-
tors.

Similar to neural language models [18], the call sequence
of laughter was modeled with a recurrent neural network. We
used an architecture with an LSTM layer with 128 hidden di-
mensions, a linear layer, and a softmax layer. The dimensional-
ity of the input was 64 (phone embedding) + 1 (Pend(n)) + 1
(speaker) + 2 (emotion dimensions) = 68.

Generated phones resulting from 10 draws for several com-
binations of emotion dimensions are shown in Fig. 6. Note that
these are random draws without any cherry-picking, so many
duplicates exist in the lists. From the figure, it is apparent that
emotion and speaker individuality are reflected not only in the
length of laughter but also in the pattern of laughter phones.
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For example, more pleasant and aroused laughter contains more
/a/’s and voiced inhalations.

5. Laughter sound synthesizer
The current waveform synthesizer is basically a vocoder-based
parametric speech synthesis [19], which can model human vo-
calization better than end-to-end models for limited data sizes,
such as the one used in our case. The input feature set for dura-
tion modeling consisted of the identity of current consonant-
vowel (19), 2 phonetic variations (voicedness, nasality) and
their left and right context (×3), phone position (1), laughter
length (1), and 2 emotion dimensions (67 in total). For acoustic
modeling, phone duration and 3 numerical features for coarse-
coded frame position in the current phone [20] were added to
the input, and 59th-order Mel-cepstrum, log fo, aperiodicity,
their ∆, ∆∆, and the voicedness were inferred as the output.
The network was composed of a three-layer stacked bidirec-
tional LSTM with 128 hidden dimensions and a linear layer.
For the subsequent experiment, the model was trained with the
04 MSY dataset whose waveform was downsampled to 16 kHz.

6. Experiment
To investigate emotion controllability in the proposed laughter
synthesis, we conducted an ablation study on both the phones
generator and the laughter sound synthesizer. Hereafter, we de-
note the absence or presence of emotion inputs to the phones
generator as −/+phones, and similarly, the absence or pres-
ence of emotion inputs to the laughter sound synthesizer as
−/+acoust. The emotion inputs were masked at the training and
inference stages in the −phones and −acoust conditions. For
each of 10 pleasantness and arousal combinations (4, 4), (4, 5),
(5, 4), (5, 5), (5, 6), (6, 5), (6, 6), (6, 7), (7, 6), and (7, 7), twenty
sequences were generated using the phones generator. Then,
the corresponding laughter waveform was synthesized from the
acoustic features generated for each sequences using WORLD
[21]. The generated phones and synthesized waveforms are pro-
vided as the multimedia files for this paper.

For each condition, the first 10 phone sequences were used
in the listening test (see Fig. 6). The number of stimuli was
10 (target emotion dimensions) × 10 (phone sequences) × 2
(−/+phones) × 2 (−/+acoust) plus two reference real laughter
sounds for subject screening × 4 (repetitions) = 408. Thirty-
one undergraduate and graduate students who were not involved
in speech research participated in the listening test. First, they
watched a video that described the objectives of the experi-
ment and an introduction to the theory of emotion dimensions.
The subjects then used a web interface to listen to the stimulus
sounds in a random order and evaluated perceived pleasantness
and arousal on a 7-point scale, as in Sect. 3. From the results
of the screening test, two subjects were found not to meet our
criteria (distinguishing between obviously pleasant/unpleasant
laughter and responding consistently to identical stimuli), so
their responses were excluded from later analysis.

The perceived pleasantness and arousal for the 400 synthe-
sized laughter sounds were averaged over the subjects. Figure 7
shows the distribution of perceived pleasantness and arousal.
For both dimensions, the +phones+acoust model showed the
best controllability, as the correlation coefficient is as high as
0.87 (pleasantness) and 0.84 (arousal). This means that the
emotion input to the phones generator and the emotion input
to the laughter sound synthesizer are individually effective, but
the emotion input to the both modules is even more effective. A
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Figure 7: Relationship between target and perceived emotion
from synthesized laughter for (a) pleasantness, and (b) arousal.
Points are horizontally jittered to avoid overplotting.

statistical test for the difference between two paired correlations
revealed that the correlation coefficient for the +phones+acoust
model is significantly higher than that for the +phones−acoust
model for both dimensions (p < 0.01).

Best linear models to predict responses from the target di-
mension were obtained through variable selection using AIC:

ŷple =0.112− 0.301δphones − 0.199δacoust + 0.141δphonesδacoust

+ (0.669δphones + 0.489δacoust − 0.321δphonesδacoust)x
ple,
(4)

ŷaro =− 0.265δphones − 0.198δacoust + 0.171δphonesδacoust

+ (0.661δphones + 0.561δacoust − 0.375δphonesδacoust)x
aro,
(5)

where δphones and δacoust are the dummy (0/1) variables corre-
sponding to the −/+phones and −/+acoust conditions. The coef-
ficients of xple and xaro in Eqs. (4) and (5) clearly demonstrate
the synergistic effect gained by controlling both the phones gen-
erator and the sound synthesizer.

7. Conclusions
In this paper, we proposed a generative model for laughter in
conversation, which allows for the production of a wide variety
of laughter that can be controlled by emotion dimensions. Our
results indicate that conditioning both the phones generator and
the laughter sound synthesizer on emotion dimensions is most
effective in controlling perceived pleasantness (R = 0.87) and
arousal (R = 0.84).

One limitation of the current study is the lack of scalabil-
ity, as call-level annotation for new datasets could become a
bottleneck. Although state-of-the-art speech recognition sys-
tems such as Whisper can transcribe laughter calls to some ex-
tent, they cannot distinguish the phonetic variants necessary for
laughter synthesis. One potential solution is to fine-tune the
model using richly annotated laughter data such as the one built
in this study.
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