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Abstract
Audio and visual modalities are inherently connected in speech
signals: lip movements and facial expressions are correlated
with speech sounds. This motivates studies that incorporate the
visual modality to enhance an acoustic speech signal or even
restore missing audio information. Specifically, this paper fo-
cuses on the problem of audio-visual speech inpainting, which
is the task of synthesizing the speech in a corrupted audio seg-
ment in a way that it is consistent with the corresponding vi-
sual content and the uncorrupted audio context. We present an
audio-visual transformer-based deep learning model that lever-
ages visual cues that provide information about the content of
the corrupted audio. It outperforms the previous state-of-the-
art audio-visual model and audio-only baselines. We also show
how visual features extracted with AV-HuBERT, a large audio-
visual transformer for speech recognition, are suitable for syn-
thesizing speech.
Index Terms: speech, inpainting, audio-visual, transformer,
multimodal, deep learning

1. Introduction
Speech is one of the most common multimodal events in our
daily life. Thanks to the expansion of the Internet, we are ex-
posed to a lot of speech signals from digital content as well:
news, social networks, virtual meetings and video calls. Some-
times, the audio stream is corrupted due to, e.g., muted micro-
phones, external noises or transmission losses. One solution is
to estimate the lost audio information, saving content creators
the time to re-make their videos or avoiding a speaker to repeat a
sentence. The process of restoring the corrupted audio signal is
known as audio inpainting [1]. Carrying out such a restoration
for long segments of corrupted audio (>200ms) is not a simple
task, as there is no prior information about the missing content.
There are several ways to address the problem. From an audio-
only (AO) perspective, the work in [2] relies on a generative ad-
versarial network approach to generate realistic speech content
for a gap size up to 500 ms. In [3], an encoder-decoder archi-
tecture is used to inpaint the audio in both time-frequency and
time domain for segments up to 250 ms. The works in [4] and
[5] propose a similar idea operating only in the time-frequency
domain for gaps up to 64 ms and 400 ms, respectively.

There are works using additional modalities, that are not
affected by the acoustic noise, as cues to guide the inpainting
process. This allows to inpaint larger gaps. For example, [6]
uses text to guide the inpainting process of audio gaps up to
1000 ms, relying on transformers and contrastive learning. In
[7], video information is extracted from face landmarks to in-
paint gaps up to 1600 ms using Bi-directional Long-Short Term
Memory (Bi-LSTM) units. The task of restoring a missing au-

dio segment by leveraging the visual information of the speaker
is known as audio-visual speech inpainting (AVSI). We present
in this work an AVSI deep learning model which can restore
long gaps of speech. In contrast to [7], we use high-level visual
features useful for speech recognition and a multi-modal trans-
former that allows to establish long range interactions across
the audio and visual modalities, while being robust to potential
misalignments among them. Moreover, the work in [7] was lim-
ited to a constrained dataset of non natural speech [8], while we
train and test our model in a large-scale dataset of natural and
unconstrained speech [9] (in addition to [8]).

The contribution of this paper is two-fold: First, we propose
a transformer architecture that analyzes a time-frequency repre-
sentation of the corrupted audio signal and the corresponding
uncorrupted visual information to synthesize intelligible speech
even for a long corrupted audio segment, obtaining state-of-the-
art results. Secondly, we show that speech inpainting can benefit
from using high-level visual features extracted with the Audio-
Visual HuBERT Network (AV-HuBERT) [10], whose effective-
ness for related tasks has previously been reported.

2. Approach
2.1. Signal Model

Let x[t] be a discrete-time acoustic speech signal and X =
{X(k, l); k = 0, . . . ,K − 1; l = 0, . . . , L − 1} be the cor-
responding short-time Fourier transform (STFT), where k and l
indicate frequency and time indices, respectively. Furthermore,
let A ∈ RK×L denote a magnitude spectrogram matrix de-
fined from the element-wise absolute values of the elements
in X and M ∈ RK×L a binary mask that provides the posi-
tion of the corrupted region of the spectrogram [7, 11]). Then,
the inpainted magnitude spectogram, Q ∈ RK×L, can be de-
fined as Q = M ⊙ A + (1 − M) ⊙ Â, where ⊙ indicates
the element-wise product and Â ∈ RK×L denotes an estimated
speech STFT magnitude matrix. For the binary mask matrix
M, we assume that the i-th column consists of ones if the i-th
column of A is uncorrupted and zeros otherwise.

2.2. Proposed Framework

AVSI leverages the video stream to improve speech inpaint-
ing, by providing information about the acoustic speech con-
tent within the corrupted region. Our processing pipeline is di-
vided into four different stages: feature extraction, multi-modal
fusion, inpainting process and waveform reconstruction. The
whole process is depicted in Fig. 1.

In the feature extraction stage, we extract high-level
visual features using the AV-HuBERT’s [10] video encoder,
which processes the sequence of video frames using a ResNet
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[12] followed by a transformer encoder to model the temporal
dependencies. In addition, we use a simple multi-layer percep-
tron (MLP) with exponential linear unit (ELU) activation on
top, leading to a signal v ∈ RD×T , where D is the dimension-
ality of our embeddings and T the amount of frames. In order
to extract learned acoustic features, we use a similar MLP that
takes as input the masked spectrogram X ⊙ M, resulting in a
signal a ∈ RD×L (see Fig. 1). The aim behind this design is
to process each audio frame independently, as we assume many
audio frames can be corrupted.

In the multi-modal fusion stage, the goal is to fuse the
acoustic and visual features, learning the relationship between
both. To do so, we rely on a six-block transformer encoder that
ingests an audio-visual (AV) embedding. We construct the AV
embedding by concatenating both modalities temporally, as in
[10, 13, 14, 15]. Since the transformer is unaware of the position
or the modality type of each element in the sequence, we sum a
positional encoding (pe) that reflects the temporal sorting of the
elements in the sequence [16] and a modality encoding (me)
that transmits whether each element is an acoustic or a visual
feature [15], obtaining:

(a ; v) = (pea +mea + a ; pev +mev + v) (1)

where (· ; ·) denotes the concatenation of two sequences, result-
ing in an AV sequence (a ; v) ∈ RD×(T+L). Alternatively,
channel-wise concatenated AV embeddings can be used. Com-
pared to the temporal concatenation, channel-wise concatena-
tion would require an extra hyperparameter related to the num-
ber of features devoted to the visual and acoustic signals. Be-
sides, due to the difference in the sampling rate, visual features
should be upsampled to the temporal size of the audio ones.
On the other hand, we empirically found that, in case of an
out-of-sync AV stream, temporal concatenation results in pre-
dictions which are shifted in time, whereas in the channel-wise
case, the system collapses and generates mumbling. An out-of-
sync AV stream may occur due to software or hardware issues:
codecs, latency, missing frames and it is frequent in low-quality
videos. The robustness of the temporal concatenation to out-
of-sync (i.e. misaligned) audio-visual pairs was also noticed in
[13]. The downside effect is that the final sequence is larger,
thus implying more computational cost.

In the inpainting stage, we use a seven-block transformer
that processes the high-level features generated by the encoder
to provide an estimate Â of the underlying uncorrupted speech
magnitude spectogram. At this stage, the transformer’s role is
two-fold: It has to act as an auto-encoder, i.e. reconstruct the
uncorrupted segment of the audio, and it has to inpaint the cor-
rupted segment.

In the waveform reconstruction stage, we estimate the
phase of the underlying uncorrupted speech spectrogram using
Local Weighted Sums (LWS) [17] and then compute the inverse
STFT to recover the waveform, as done in [7] (for a fair com-
parison).

2.3. Training Loss, Data Pre-Processing and Model Setup

We downsample the waveforms to 16 kHz. We compute the
STFT with a hop size of 256, and a Hanning window of length
512. To process the video, we crop the mouth region, resizing
the resulting frames to 96 × 96. Lastly, we extract the visual
features as described in Section 2.2.

The transformer ingests 512-element embeddings across 8
heads. The dimensionality of the transformer’s feed-forward
layer is 1024. We use Gaussian error linear units (GELU) [18]

Figure 1: Proposed audio-visual model. The pre-trained video
encoder corresponds to [10].

activation for the transformer and ELU [19] everywhere else.
We train the model with a batch size of 10, a learning rate of
10−4 and the ADAM optimizer. As loss function we use a
weighted mean absolute error (MAE):

L(A, Â) = αMAE(Âc,Ac) + βMAE(Âu,Au), (2)

where α, β ≥ 0, and the superindices c and u denote corrupted
and uncorrupted parts, respectively. We set α > β, so that the
network is forced to focus on the inpainting task, as it is much
harder than the auto-encoding task (we use α = 10 and β = 1).

While training, we use the loss (2), so the network pre-
dicts the whole spectrogram (both the corrupted and uncor-
rupted parts). At inference, once the spectrogram is predicted,
we replace the known parts of the spectrogram via masking as
shown in Figure 1.

3. Experiments
3.1. The Datasets

We train our model and the baselines using two different
datasets: the Grid Corpus [8] and the Voxceleb2 dataset [9].

The Grid Corpus is a 30-hour AV dataset consisting of 33
speakers recorded in a controlled environment with a chroma
screen as background, a frontal point of view, controlled light-
ning and a small vocabulary. Each video is 3 s long, recorded
at 25 fps for the video and at 50 kHz for the audio. We split the
dataset into training, validation and testing as in [7], for a fair
comparison.

The Voxceleb2 dataset is a large-scale dataset consisting
of in-the-wild recordings of celebrities, which contains un-
constrained natural vocabulary. Videos vary in duration and
sampling rate. We trained the system with 2-second excerpts
trimmed randomly. We select only those videos that are in En-
glish, the predominant language in the dataset, in order to dis-
card biases in the results due to the language distribution.

We corrupt the speech data with fullband temporal gaps of
a duration between 160 and 1600 ms. During training, the cor-
rupted segments are distributed randomly along each sample in
a batch. During validation we apply the same logic so that the
distribution of the validation set is as close as possible to the
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Figure 2: Comparison of performance vs corruption duration evaluated in the Grid Corpus test set (see Sec. 3.1).

one of training. During testing, we run the system in 5 different
setups: a random distribution of the gaps, as described before;
corrupted segments with a gap of size 160 ms, 400 ms, 800 ms
and 1600 ms. The Grid sentences typically include initial and
trailing silence regions. When corrupting the speech signals, we
ensure that the entire corrupted segment is located in the speech
active parts of the Grid sentences (unlike [7], where corrupted
segments were randomly chosen).

3.2. Audio-Only and Audio-Visual Baselines

We compare the proposed AVSI model against the previous
state-of-the-art AV model, proposed in [7], and against the AO
version of our model. In the AV baseline [7], the authors pro-
pose a framework whose core is a stack of three Bi-LSTM lay-
ers fed with an AV signal. As acoustic features, they use nor-
malized log magnitude spectrograms, while the visual features
are landmark-based motion vectors. In order to fuse the acous-
tic and the visual features via concatenation, they upsample the
visual features to the sampling rate of the spectrogram. They
minimize the mean squared error of the predicted log magni-
tude spectrogram with respect to the ground-truth one in the
corrupted segment. Note that this is different from our setup, as
we apply the loss on the whole predicted signal, not only in the
corrupted segment.

We also train our model in an AO setup, i.e., without vi-
sual information as input. This baseline permits to explore the
benefits of using the additional modality of the video stream.

4. Results
We evaluate our model using three metrics: the MAE between
the magnitude spectrogram and the ground-truth within the cor-
rupted speech region; STOI [20], a speech intelligibility esti-
mator; and PESQ [21], a speech quality estimator. STOI and
PESQ scores lie between -1 and 1, and -0.5 and 4.5, respec-
tively. While lower MAE scores corresponds to a lower recon-
struction loss, for PESQ and STOI, the higher the better.

Since it is not possible to use STOI and PESQ for signals
shorter than a few hundreds ms [20, 21], we cannot use them
only on the corrupted part. Therefore, we compute the scores
for the whole signal. This lowers the sensitivity of the metrics,
especially when inpainting short segments.

4.1. Constrained Vocabulary Performance

As our goal is to develop a system capable of dealing with cor-
rupted segments of any duration, rather than training a system
specifically for each gap length, in Table 1, we report the over-
all performance of the model trained and evaluated in the Grid
Corpus for a distribution of segment durations that matches that
of the training stage. As it can be clearly seen, the proposed
AV model is not only better than its AO counterpart, but it also
outperforms the previous state-of-the-art AV model [7].

Table 1: Performance scores averaged across the Grid test set.
Corrupted segment lengths sampled from a uniform distribu-
tion. The symbol ↑ (↓) indicates higher (lower) the better.

PESQ ↑ STOI ↑ MAE ↓
Corrupted input 1.78 0.58 0.43
Morrone et al. [7] 1.98 0.79 0.39
Proposed, audio-only 2.07 0.79 0.34
Proposed, audio-visual 2.21 0.84 0.31

4.2. Performance vs Segment Duration

From Table 1, we can notice that the performance of the AV
baseline, [7], is worse than the proposed AO model. As AO
methods are good at inpainting short gaps, we carried out an
analysis of the performance of each model against the corrupted
segment duration. The results are shown in Fig. 2.

Considering the MAE values, we can see that they do not
change significantly for segments larger than 800 ms. We hy-
pothesize that the uncorrupted audio is used to determine the
voice characteristics and the speech continuity in the bound-
ary of the corrupted segment, while the rest is purely generated
from the visuals. That is why the AO model works well for
short gaps, where the missing information can be inferred from
the audio context, and fails to inpaint larger gaps. Besides, the
relative MAE between the reconstructed segments of 1600 ms
and 160 ms (27% for the AO model and around 10% for the AV
models) shows the effectiveness of the AV methods, as the MAE
degradation of the AO model is much higher.

Analysing the results for each segment duration, the per-
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Figure 3: Sentence lwib4a for speaker 34 in the Grid corpus test set. Transcription: ”lay white in b four again”. The region within the
green square indicates the corrupted area. In practice, that region is set to zero as input to the network.

formance of the proposed AV and AO models, according to the
estimated intelligibility (STOI), is roughly similar when consid-
ering corrupted segments of 160 ms.

On contrary, for corrupted segments of 400 ms, the pro-
posed AV model is better at intelligibility and perceived quality.
Nevertheless, the AO model is still very effective. In Fig. 3 we
can observe how the spectrogram predicted by the AO model is
similar to that of the AV model, even the harmonics are better-
defined than in the AV baseline’s spectrogram.

For corrupted segments of 800 ms and 1600 ms, the pro-
posed AV model is the best. For such long gaps, the AO model
is no longer capable of estimating the content of the sentence.
It just generates a kind of mumbling, either as a consequence
of inpainting the sample with certain energy bands that match
the harmonics of the voice or as an attempt to mimic sentences
learned from the dataset. If we consider PESQ, we can see that,
for segments of 1600 ms, the scores for the models tend to col-
lapse to a single point. Our hypothesis is that, for such a long
gap, the speech context is almost non-existent (see the first row
of Fig. 3), therefore the task becomes close to speech recon-
struction from silent videos [22], for which speech characteris-
tics of unknown speakers, that are important for PESQ, cannot
be easily estimated using only the video information.

4.3. Natural Vocabulary Performance

In Sections 4.1 and 4.2 we evaluated the model in the Grid Cor-
pus, where the vocabulary is limited and unnatural. It is of our
interest to study the performance of the model with real-world,
in-the-wild data. In Table 2, we evaluate the model trained in
the English subset of Voxceleb2. Both, the baseline model from
[7] as well as the AO model did not converge when training in
Voxceleb2.

The results show how the proposed AV model is capable of
generating meaningful speech on in-the-wild scenarios with un-
constrained vocabulary, unlike the baseline and the AO model.
This reflects the capabilities of AV models to synthesize speech
in complex scenarios.

Table 2: Performance scores averaged across Voxceleb2 test
set. Corrupted segment lengths sampled from a uniform distri-
bution. The symbol ↑ (↓) indicates higher (lower) the better.

PESQ ↑ STOI ↑ MAE ↓
Corrupted input 1.37 0.43 0.56
Proposed, audio-visual 1.95 0.70 0.37

Some demos of reconstructed audio signals (both in Grid
and Voxceleb2 test samples) are available at https://ipcv.
github.io/avsi/.

5. Conclusions and Future Work
This paper presented a new state-of-the-art AVSI model that can
inpaint long gaps, up to 1600 ms, for unseen-unheard speakers.
We tested our model in the Grid Corpus [8] and showed that it
outperforms its audio-only counterpart for gaps larger than 160
ms, and the previous state-of-the-art approach. In addition, we
showed that the visual features extracted from the AV-HuBERT
network encode enough information to guide the inpainting pro-
cess. Besides, we showed our model can inpaint natural, uncon-
strained speech in in-the-wild scenarios (Voxceleb2 dataset [9]).
One of the limitations of the proposed and the existing AVSI ap-
proaches is that the mapping between phonemes and visemes is
not bijective, namely, a single viseme may correspond to many
phonemes [23]. For example, the sentences “elephant juice”
and “I love you” share the same visemes. To overcome this lim-
itation, additional information may be included, such us context
information about the scenario or language models.
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