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Abstract
Automatic assessment of reading fluency using automatic

speech recognition (ASR) holds great potential for early detec-
tion of reading difficulties and subsequent timely intervention.
Precise assessment tools are required, especially for languages
other than English. In this study, we evaluate six state-of-the-
art ASR-based systems for automatically assessing Dutch oral
reading accuracy using Kaldi and Whisper. Results show our
most successful system reached substantial agreement with hu-
man evaluations (MCC = .63). The same system reached the
highest correlation between forced decoding confidence scores
and word correctness (r = .45). This system’s language model
(LM) consisted of manual orthographic transcriptions and read-
ing prompts of the test data, which shows that including reading
errors in the LM improves assessment performance. We discuss
the implications for developing automatic assessment systems
and identify possible avenues of future research.
Index Terms: reading diagnostics, automatic reading evalua-
tion, automatic speech recognition, oral reading, child speech

1. Introduction
Research on the contribution of ASR technology to developing
intelligent systems that can support children learning to read
in languages other than English is scarce, especially when it
comes to studies that have evaluated the usability of the tech-
nology under realistic conditions. Important reasons for this are
the limited availability of child speech resources for languages
other than English, the complexity of developing applications in
line with pedagogical requirements and state-of-the-art (SOTA)
technology, and the difficulties in obtaining funding for such
interdisciplinary projects.

The majority of the studies conducted so far, including
those addressing English, have focused on either the develop-
ment of reading tutors, that is systems that provide feedback
while children are reading (e.g. project LISTEN [1, 2]), or the
assessment of reading skills at a global level [3, 4]. A pos-
sible, innovative contribution of ASR technology could be at
the level of reading diagnostics, but, apart from a few excep-
tions [5, 6], this avenue of research has remained rather unex-
plored so far. The idea would be that ASR is employed offline
to automatically identify reading errors and that the informa-
tion provided is further analysed to detect patterns in reading
errors that might help to identify possible underlying problems
or develop more personalised reading trajectories. This level of
detail and control is not possible with (third-party) online ASR.
In the context of reading diagnostics ASR should do more than
recognise words; it should perform an analysis at a more de-
tailed level on the three aspects of reading fluency: Accuracy,
speed and prosody. Previous studies on developing ASR to sup-

port learning to read in Dutch have not addressed this specific
topic [7, 8, 9, 10]. However, considerable progress has been
made in ASR in last few years. Recent research has shown that
even in online practice ASR technology could be successfully
employed to provide feedback to first graders learning to read
in Dutch. [11]. Against this background it seems worthwhile
to investigate to what extent current ASR systems can be em-
ployed to obtain diagnostic measures of reading proficiency. In
the present paper we report on a study we conducted to pursue
this research goal. The specific research question we addressed
is: To what extent is it possible to automatically assess oral
reading accuracy in children learning to read in Dutch?

To operationalise our RQ we employed two ASR systems,
Kaldi and Whisper. Kaldi is a well-established, free, and
open-source toolkit for ASR [12]. In contrast, Whisper is a
SOTA Python-based ASR system1. Despite its novelty, Whis-
per has already demonstrated promising results in the analysis
of speech data, making it a valuable tool for speech-language
pathologists and reading tutors alike [13]. By utilising the ad-
vanced capabilities of Kaldi and Whisper, reading tutors can
more accurately identify reading problems in a student’s speech.
This information can in turn be used to develop tailored instruc-
tion plans to address these problematic areas. Furthermore, the
objective data provided by these technologies can help tutors
track a student’s progress over time and provide evidence-based
assessments to support their instruction. Therefore, the integra-
tion of ASR into reading tutor programs has the potential to
significantly improve the quality and effectiveness of reading
intervention programs in schools, ultimately leading to better
outcomes for students.

2. Methodology
To automatically assess the accuracy of children reading in
Dutch, we analysed alignments of reading prompts (PR) with
ASR output (AO) and manual orthographic transcriptions (MO)
for the utterances produced by each child in a subset of a corpus
of child speech [14]. The MOs contain all words uttered by the
child, including reading errors. We call the alignment between
PR and MO Reading Errors Manual (REM), and the alignment
between PR and AO Reading Errors Automatic (REA). Com-
paring the REM and REA alignments tells us whether the ASR
captures the same reading errors that are present in the MO.
This evaluation is key to automatic accuracy assessment: To op-
timise the degree of actual reading errors captured by the ASR
is to optimise automatic accuracy assessment.

The present method consisted of three stages. First, four
Kaldi [12] ASR systems with different language models (LMs)
were developed to identify the role of each LM. For compari-
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son, two Whisper ASR systems (with and without prompt hints)
were employed alongside the Kaldi systems. Second, hypoth-
esised and referent strings were aligned using ADAPT [15]
to measure agreement between human and automatic assess-
ment. Finally, forced decoding (FD) confidence scores were
obtained to evaluate Kaldi ASR systems’ confidence for each
word present in the referent string prompt.

2.1. Test Data

All analyses were carried out using recordings of native Dutch
children’s read speech from the JASMIN corpus [14]. This sub-
set of JASMIN contains 1.78 hours of speech for a total of 1455
sentences and 13,180 words. It features 71 children, aged 7-
11 years. The corpus has complementary reading prompts and
phonemic and orthographic transcriptions for the recordings. In
line with the practice in reading instruction in the Netherlands,
all speakers read texts that were appropriate for their reading
level on the AVI reading scale [16].

Manual orthographic transcriptions were automatically seg-
mented into utterances matching the corresponding prompt and
audio file using a Python script2.

2.2. ASR Systems

Four different ASR systems were built using the Kaldi ASR
toolkit [12]. Each system had the same acoustic model (AM)
but a different language model (LM). In particular, we built
nnet3 Time delay neural network and long short-term memory
(TDNN+LSTM) chain ASR systems3 with about 900 hours of
mixed media speech by Dutch adults from the largest open-
source Dutch speech dataset available, the Corpus Spoken
Dutch [17, 18] (CGN). The acoustic model contained 7 layers,
including a 40-dimension bottleneck layer at the 6th layer. The
input features were 40-dimension HR MFCCs. Frame labels
for TDNN model training were obtained by forced alignment
using a GMM-HMM model trained beforehand. The numbers
of modeled phones and triphone HMM states in the model were
81 and 3361, respectively. The LMs were 4-grams in ARPA for-
mat, built as follows. ASR Kaldi-CGN used the large general-
purpose LM from CGN (150k words in the lexicon). ASR
Kaldi-PR used an LM containing only words from the reading
prompts (PR) from the JASMIN test data. ASR Kaldi-MO used
an LM containing only words from the MO from the test data,
and ASR Kaldi-PM used an LM containing both PR and MO
words. In all cases interpolation was applied to the LM.

In addition, two Whisper-based ASR systems were tested
on this task. Whisper ASR models have been recently intro-
duced by OpenAI. They are general-purpose and multi-task,
trained in a fully supervised manner, using up to 680k hours
of labeled speech data from multiple sources. The models are
based on an encoder-decoder Transformer, which is fed by 80-
channel log-Mel spectrograms. The encoder is formed by two
convolution layers with a kernel size of 3, followed by a si-
nusoidal positional encoding, and a stacked set of Transformer
blocks. The decoder uses the learned positional embeddings
and the same number of Transformer blocks from the encoder.
For this study, we used the ”Whisper large-v2” model, which
consists of 1550 million parameter distributed in 32 layers and
20 attention heads. The model is available via Huggingface4.
Whisper offers one way to suggest vocabulary (clues) to the
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model in order to increase probabilities of the provided words.
Thus, two alternatives were evaluated, without (Whisper-Lv2)
and with prompts as clues (Whisper-PR). The decoding was
performed using a beam search strategy with 5 beams, an ar-
ray of temperature weights of [0.2,0.4,0.6,0.8,1].

The computer configuration on which the experiment was
conducted had Ubuntu 18.04.1 LTS (64-bit operating system),
AMD EPYC 7502P 32-Core (64 threads) processor with 2.5-
3.35 GHz, 251GB of RAM and three NVIDIA Tesla T4. On
this machine, we trained the models for Kaldi and decoded the
test audio files using both Kaldi and Whisper ASR systems.

As standard measures of decoding performance for each
ASR system, word and sentence error rates (WER and SER)
were calculated. To obtain error rates, ASR output was scored
against both prompts and manual orthographic transcriptions
using sclite from the SCTK toolkit5.

2.3. Alignment with ADAPT

The performance of the six ASR systems in assessing oral read-
ing accuracy was evaluated using ADAPT, a dynamic program-
ming algorithm [15]. ADAPT takes a referent and hypothesis
string for a given sentence, aligns them, and scores the edit dis-
tance between them on the word level. Since orthographic tran-
scriptions were used, edit distance was calculated as the dis-
tance between two grapheme strings. If a reference word is
present in the hypothesis, ADAPT judges it as correct. In this
case, the referent string is the reading prompt and the hypothesis
is the transcription of the child’s utterance.

We adopted Bai et al.’s [19] method of alignment, which
takes into account that children’s oral reading may contain
restarts. In line with how teachers judge such utterances, the
algorithm judges a word as read correctly if it finds a complete
instance of that word in the whole utterance. This is done by
starting matching at the end of the utterance and working back-
wards, thus avoiding scoring any restarts or partial words before
the correct word is found.

PR wanneer ze klaar is klappen we opnieuw
MO wanneer uh ze k klaar is klap klappen we opnieuw
Aligned PR wanneer ---ze --klaar is -----klappen we opnieuw
Aligned MO wanneer uh|ze k|klaar is klap|klappen we opnieuw

Figure 1: Example of ADAPT alignment of a prompt and man-
ual orthographic transcription.

An example from the test data of PR, MO, and their align-
ment can be found in Figure 1. Hyphens mark insertions (char-
acters present in the hypothesis but not in the reference) or dele-
tions (vice versa). Vertical lines mark word boundaries. In this
example, ADAPT calculates a distance score of 10 insertions
between PR and MO, but marks all words as correct as indeed
all PR words are present in the MO.

The baseline alignment of PR and MO constitutes Reading
Errors Manual (REM). In addition, the output from each ASR
(AO) was aligned with prompts to generate Reading Errors Au-
tomatic (REA). REA for each ASR were then evaluated using
the correctness scores provided by the ADAPT as follows. If
we consider the correctness judgements from REM and REA as
two different ratings, by a human and automatic rater, we can
calculate inter-rater agreement on these scores. Agreement was
calculated using several metrics. Confusion matrices were gen-
erated for REM and each REA in R Statistical Software[20].
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These were then used to calculate precision, recall, specificity,
F1 and Matthews correlation coefficient (MCC) [21, 22]. Since
our data is very skewed (most words are read correctly), we
report MCC here instead of the more common Cohen’s kappa
[23]. Kappa assumes equal distribution over classes and MCC
does not, making it a better fit to our data [22].

2.4. Forced Decoding

The automatic accuracy assessment of each Kaldi ASR sys-
tem was additionally evaluated using Forced Decoding (FD)6.
Forced decoding is an ASR technique that forces a speech signal
to be decoded to a target string. It compares the speech signal
to the AM for the target and then provides posterior probability
scores as a measure of confidence that the target AM matched
the provided utterance. These confidence scores are generated
for each word and for the whole utterance (mean of the word-
level scores). This is possible thanks to the representation of
the alternative word-sequences that are ”sufficiently likely” for
a particular utterance called lattices in the Kaldi argot. Some
confidence scores were erroneously calculated as either below
0 or larger than 1, which is outside the domain of probability.
These scores were rounded to 0 and 1, respectively.

FD confidence scores were obtained for Kaldi ASR sys-
tems. Note that the AM for each Kaldi system was the same,
which means differences between FD scores for the same word
are based on the lattices obtained from the combination of the
general-purpose AM and the specific LM of each Kaldi system.

Forced decoding was done for each Kaldi ASR that con-
tained words from the reading prompt in the lexicon, namely
-CGN, -PR and -PM. The reason for this is the fact that FD re-
quires all target words to be in the LM of the ASR. Carrying
out FD for Kaldi-MO would result in discrepancies between
the ADAPT alignment and FD output, since its LM consisted
only of manual orthographic transcriptions. Furthermore, since
Kaldi-PM has an LM containing both MO and PR, FD was per-
formed only with the prompt as the decoding target.

3. Results
3.1. Baseline and ASR Error Rates

In order to assess to what extent our dataset can be assessed
automatically, it should first become clear how many reading
inaccuracies we are trying to capture from the speech data. In
addition, we need generic statistics on the accuracy of each ASR
system. The baseline error rate and error rates for each ASR are
reported here.

Table 1: Baseline ADAPT alignment of PR and MO.

Item N N correct Error rate (%) ADAPT dist. score
Mean (SD)

Words 13,149 12,778 2.82 2.98 (2.72)
Sentences 1,455 1,178 19.04 6.42 (7.57)

Table 1 shows descriptive statistics for the baseline align-
ment of MO and PR for each utterance. Only 2.82% of words
were read incorrectly, which suggests that most children in the
corpus were proficient readers at the level of the text they read,
as is normal for Dutch pupils. The mean ADAPT distance score,
i.e. the mean edit distance between target and actual utterance
was 2.98 for incorrect words and 6.42 for sentences. Notably,
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the standard deviation was larger than the mean for sentences,
indicating some large outliers. Outliers with edit distance ≥ 20
were excluded from further analysis.

WER, SER and accuracy for all ASR systems are reported
in Table 2 for both ground truth conditions (MO and PR). The
best WER (4.5%), SER (14.8%) and accuracy (99.0%) values
for ASR output compared to PR was reached by Kaldi-PR. Con-
versely, Kaldi-MO reached best WER (5.0%), SER (26.8%) and
accuracy (95.5%) for AO compared to MO. Whisper’s general-
purpose model reached better WER, SER and accuracy than
Kaldi-CGN in both ground truth conditions. ASR Kaldi-PM’s
error rates were in between those of Kaldi-PR and Kaldi-MO in
both ground truth cases. Notably, while the generic Whisper-
Lv2 outperformed generic Kaldi-CGN, the specific-LM Kaldi
systems performed much better than specific-LM Whisper.

Table 2: Error rates versus PR and MO for each ASR.

ASR system LM Ground truth WER (%) SER (%) ACC (%)

Kaldi-CGN CGN MO
PR

29.6
33.6

84.0
86.0

73.3
74.8

Kaldi-PR PR MO
PR

8.3
4.5

41.1
14.8

92.4
99.0

Kaldi-MO MO MO
PR

5.0
8.7

26.8
33.9

95.5
97.1

Kaldi-PM PR + MO MO
PR

5.2
7.6

28.5
28.3

95.2
97.9

Whisper-PR PR + large v2 MO
PR

15.5
9.8

41.7
22.3

87.7
94.5

Whisper-Lv2 large v2 MO
PR

13.4
10.9

53.0
47.6

87.2
91.1

3.2. Agreement Metrics

Metrics on the comparison of REA with REM are reported in
Table 3. ASR Kaldi-CGN reached highest precision (.994) and
specificity (.842), but much lower recall (.773) than Kaldi-PR,
-MO and -PM (.990 – .995), which had LMs customised to the
test data. Only Kaldi-CGN reached a level of specificity some-
what close to its recall, which shows that this system had fewer
false positives and thus was better at identifying true negatives.

Table 3: Agreement metrics between REM and REA.

ASR system Precision Recall F1 Specificity MCC

Kaldi-CGN .994 .773 .870 .842 .24
Kaldi-PR .977 .995 .985 .182 .28
Kaldi-MO .990 .990 .990 .655 .65
Kaldi-PM .987 .994 .991 .554 .63
Whisper-PR .983 .957 .970 .420 .28
Whisper-Lv2 .972 .946 .959 .067 .01

In the same vein, Kaldi-PR and Kaldi-PM have very high
F1 scores (.985 and .991) but low specificity (.182 and .554),
indicative of few missed true positives and many missed true
negatives. This can be clearly seen in the confusion matrix for
ASR Kaldi-PM in Table 4. The ASR output is heavily skewed
towards acceptances, with only 2.12% of words judged as read
incorrectly. This is close to the actual error rate in this dataset:
Only 2.82% of words are read incorrectly. This similar error
rate in REM and REA suggests the ASR performs well at spot-
ting reading errors.

MCC was calculated to define agreement between REM
and REA. The highest MCC (.65) was found for REA by ASR
Kaldi-MO, closely followed by Kaldi-PM (.62). Both indicate
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substantial agreement between REM and REA. REA by other
systems was much less accurate. Kaldi-CGN and -PR had an
MCC of .24 and .28 (fair) with REM, respectively. Whisper-PR
and Kaldi-PR reached equal agreement with REM at MCC=.28
(fair), whereas Whisper-Lv2 had no agreement with REM at
MCC=.01.

Table 4: Confusion matrix of word correctness in PR:MO
alignment (REM) and PR:AO alignment (REA) for Kaldi-PM.

REM

REA
Incorrect Correct

Incorrect 205 (1.56%) 72 (0.55%)
Correct 166 (1.26%) 12,706 (96.63%)

3.3. Correlations between FD and ADAPT

We expected a relationship between FD confidence scores and
ADAPT correctness judgements, since FD confidence scores
should be lower for incorrect words and higher for correct ones.
We therefore calculated point-biserial correlations between FD
confidence scores and ADAPT correctness for the Kaldi ASR
systems that contained prompt words: Kaldi-CGN, Kaldi-PR
and Kaldi-PM. We also calculated Pearson correlations between
FD confidence scores and ADAPT distance scores for all words.
These correlations are presented in Table 5. Because Whisper
was outperformed by Kaldi in error rate and agreement, we did
not not calculate comparable correlations between Whisper’s
confidence scores and ADAPT correctness.

All correlations between FD confidence scores and ADAPT
correctness judgements (A.Cor) were significant at p<.001.
The highest correlation was found for Kaldi-PM at r = .45.
Much lower correlations were found for Kaldi-CGN (r = .15)
and Kaldi-PR (r = .18). Correlations between FD confidence
scores and ADAPT distance scores (A.Dist) were small. The
highest correlation was found for Kaldi-PM at r = -.20.

4. Discussion
Our findings show that ASR for children’s oral reading with a
narrow LM may lead to better accuracy in word recognition,
but is not so good at identifying reading errors. This applies
to both Kaldi and Whisper: Kaldi-PR and Whisper-PR both
had better WER, SER and accuracy but not better agreement
than the generic models Kaldi-CGN and Whisper-Lv2. Further-
more, Kaldi outperformed Whisper even despite the use of read-
ing prompts as clues: Kaldi-MO and Kaldi-PM both had better
error rates and agreement than Whisper-Lv2 and Whisper-PR.
The highest agreement was found for the ASR system with a
language model consisting of MO of the target speech (ASR
Kaldi-MO, MCC = .65). This shows that prior knowledge of
the words that the child may use helps the ASR identify reading
errors. However, while better performance is good, this is not
necessarily a desirable result as the ASR should be able to as-
sess reading accuracy automatically and without the support of
human transcribers.

The FD confidence scores for ASR Kaldi-PM reached the
highest correlation with both REM (r = .45) and ADAPT dis-
tance scores (r = -.20), indicating that Kaldi-PM outperforms
Kaldi-MO because it scores well on all metrics: Error rate,
agreement, and correlation of confidence scores. Since Kaldi-
PM is trained with generic AM but a specific LM including both
PR and MO, it was expected to be most sensitive to actual read-

ing inaccuracies.

Table 5: Correlations of FD confidence scores with ADAPT
correctness (A.Cor) and with ADAPT distance scores (A.Dist).

ASR system LM A.Cor 95% CI A.Dist

Kaldi-CGN CGN .15*** .13 – .64 -.08***
Kaldi-PR PR .18*** .17 – .20 -.08***
Kaldi-PM PR + MO .45*** .44 – .46 -.20***

More surprising is the low correlation (r = .18) between
Kaldi-PR FD confidence scores and REM, since Kaldi-PR
reached the best WER, SER and accuracy on our data with PR
as ground truth. This shows that a low error rate does not neces-
sarily correspond to accurately identifying reading inaccuracies.
Moreover, there is only a minor difference between FD correla-
tions for Kaldi-CGN and Kaldi-PR, but a much larger difference
to Kaldi-PM. This shows that when the AM is equal, including
MO in the LM improves the ASR’s confidence the most. To an-
swer our research question, it is important to evaluate the quality
of the six systems in the right terms, as the evaluation should fo-
cus on the output of the ASR systems. It has become clear that
they do not reach a high level of agreement with human tran-
scribers when it comes to detecting reading errors. However, by
combining several metrics, we can see that Kaldi-PM assessed
over 98% of words correctly while reaching substantial agree-
ment and significant but moderate correlation with REM (MCC
= .63; r = .45). This combination of metrics seems to be promis-
ing for automatic assessment. While higher sensitivity is desir-
able, the system can be useful even without optimal metrics. For
instance, consider the context in which automated oral reading
assessment is employed: Children practising their reading - say,
two-syllable nouns in grade 1. This context can be utilised to
fine-tune the ASR’s LM, which in turn improves performance.
Finally, since we focus on offline assessment, false positives
and false negatives are not as detrimental as they would be in an
online feedback setting. Assessment can be done over several
measurements, which means the system will have more data to
work with and thus be more robust in modelling reading errors.

We identified two key areas to improve our method. Firstly,
this research showed that using an LM containing PR and MO
results in highest agreement with human assessment of reading
accuracy. This means more work needs to be done to improve
performance without MOs. Secondly, much can be gained by
using ASR systems trained on child speech. Future research
may address these shortcomings.

5. Conclusion
We evaluated six ASR systems for automatic assessment of
Dutch children’s oral reading accuracy. The best performing
system, Kaldi-PM, used an LM including both PR and MO. It
reached substantial agreement and a moderate correlation with
human assessment (MCC = .63; r = .45). Though its perfor-
mance was not perfect, we posit that this system can provide a
useful basis for automatic assessment of oral reading accuracy.
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