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Abstract

In order to utilize the large amount of historical speech re-
sources for applications such as linguistic analysis and retrieval,
automatic speech recognition technology that can handle a va-
riety of dialects is required. Although there are many dialects
in the Japanese language, there have been no reports of speech
recognition models that cover almost all Japanese dialects using
only shared dialect resources. This paper presents a baseline for
dialect speech recognition of spoken Japanese using a nation-
wide corpus of Japanese dialects released in 2022. Specifically,
the paper presents results on: 1) the effectiveness of adapting a
self-supervised learning model, which has been shown to be ef-
fective for low-resource languages, to the dialect corpus; 2) the
effectiveness of combining both automatic speech recognition
and dialect region identification tasks, or when used in conjunc-
tion with a large-scale corpus of standard Japanese, within the
framework of self-supervised learning.

Index Terms: automatic speech recognition, dialect identifica-
tion, wav2vec2.0, Corpus of Japanese Dialects

1. Introduction

The number of Japanese dialect speakers is declining and a
valuable cultural and linguistic resources are being lost. While
the construction of textual materials using high-performance
automatic speech recognition (ASR) models is effective for
standard Japanese, the performance of speech recognition for
dialects that are linguistically and acoustically different from
standard Japanese is greatly degraded due to the lack of dialect
corpus for training. Although there have been studies using
dialect speech recognition models based on handmade dialect
corpus [1, 2], creating a handmade dialect corpus is very costly.
However, with the release of the Corpus of Japanese Dialects
(COJADS) [3] in 2022, which includes speech data from all
prefectures of Japan and spans over 60 hours, it is now possi-
ble to use publicly available large-scale dialect corpus material
for research purposes. COJADS is an extremely realistic dialect
corpus that includes natural dialects that are more likely to ap-
pear in spoken Japanese in natural condition, since many of the
recordings are of low quality and are spoken by several elderly
people in a conversational style. Because it was not developed
for speech recognition, the transcriptions are in katakana only,
and do not include information on kanji or phonemes. This pa-
per reports on an attempt to build an universal speech recog-
nition model for various dialects throughout Japan using this
dialect corpus. Self-supervised learning (SSL) [4, 5, 6, 7, 8],
which has been shown to be effective for low-resource lan-
guages, is used in this research. Self-supervised learning is
a method for learning potential speech representations from
speech alone, and it is known to improve performance when

the learned speech representations are used for various down-
stream tasks such as ASR [9, 10, 11, 12, 13, 14]. XLSR [15] is
one of the SSL model built on wav2vec2.0 [6], with speech data
of 53 different languages, and has shown to be effective in low-
resource language applications. In this study, the XLSR model
is used as the basis for fine-tuning to improve the performance
of dialect speech recognition. We show that the framework of
self-supervised learning adapted to dialect corpus is effective,
when combined with both automatic speech recognition and di-
alect identification (DID) tasks, or when used in conjunction
with a large corpus of standard Japanese. The proposed method
obtained relative character error rate reductions of up to 8.9%
from models when the ASRs models ware simply fine-tuned.

2. Related work

In a previous study of ASR for Japanese dialects [2], the au-
thors improved ASR performance by multitask learning with
DID using a handmade dialect corpus. For low-resource lan-
guages, ASR models using XLSR, a self-supervised learning
model trained on multiple languages, have shown state-of-the-
art performance [15, 16]. In [17, 18, 19], the authors adapt
phonetic representation and transcription knowledge from the
source language to the target language by performing multitask
learning of SSL and ASR. With these as a reference, we com-
pare the multitask learning methods of SSL, ASR, and DID us-
ing XLSR, and examine the effectiveness of adaptation from
standard Japanese to a universal ASR model for various di-
alects.

3. Methods

In this study, experiments were conducted using wav2vec2.0
[6], a self-supervised learning model, and the Hybrid-
CTC/Transformer ASR model [20, 21, 22] as a comparison.

3.1. Hybrid-CTC/Transformer ASR

Hybrid-CTC/Transformer is a combination of CTC (Connec-
tionist Temporal Classification) [23] and Transformer encoder-
decoder model. Raw audio X is the input to the encoder layer,
which outputs an intermediate representation H. The H is then
fed as input to the linear layer, which calculates the CTC loss
Lcrc. The decoder layer, on the other hand, takes H and the
past predicted sequence Y’ as input and calculates the Decoder
loss L pecoder- The Decoder outputs one character at a time in
an autoregressive fashion. The CTC loss and Decoder loss are
weighted and added together to obtain the overall loss L.

L= )‘LCTC =+ (1 - A)LDecodeT (D

where ) is an adjustable parameter.
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Figure 1: ASR&DID multitask
learning model

3.2. wav2vec2.0-based multi-dialect ASR

wav2vec2.0 consists of a feature encoder layer, a Transformer
encoder layer, and a quantization module. The raw audio X is
input to the feature encoder layer, and the resulting 7'-frame fea-
ture representation Z is input to the Transformer encoder layer
which outputs a 7-frame audio representation C. At this time,
some frames of Z are masked. The quantization module takes Z
as input and outputs a quantized representation Q. The learning
objective Lggy, optimizes the contrast loss L,,, augmented by
the diversity loss L. In this study, we compare and investigate
the following three fine-tuning methods for multi-dialect ASR
with the SSL model of wav2vec2.0.

3.2.1. Multitask learning of ASR and DID

ASR and DID multitask learning is one of the promissing ways
to improve a multi-dialect ASR [2, 24, 25], as it is expected to
improve the performance by simultaneously predicting which
local dialect is used. Therefore, we adopt this method in the
SSL-based ASR framework as one of the methods to com-
pare. The structure of the ASR&DID joint fine-tuning model
is shown in Figure 1. The ASR task computes the CTC loss
Leore from the speech representation C, while the DID task
computes the cross-entropy (CE) loss L g from the frame av-
erage of C.

L= aLCTC + (1 — Oé)LCE (2)

where « is an adjustable parameter. Hereafter, this fine-tuning
method is referred to as ft(ASR&DID) for short.

3.2.2. Joint training with SSL and ASR losses

The effectiveness of adapting from the source language to
the target language by simultaneously considering SSL loss
and downstream task loss has been shown in previous works
[17, 18, 19]. Therefore, as a second method, we employ joint
training with SSL loss and CTC loss of the ASR task.

L= Lere + BLsst 3)
where f is an adjustable parameter. Hereafter, this fine-tuning
method is referred to as ft(SSL&ASR) for short.

3.2.3. Joint training with SSL, ASR, and DID losses

We propose joint training with SSL, CTC, and CE losses to
learn knowledge of the three objectives at once.

L=alLere+(1—a)leg +7vLsst 4)
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Figure 2: Adaptation flow from standard Japanese speech to Japanese dialects.
nal model is called “XLSR+ft(SSL&ASR)¢+ft(SSL&ASR&DID),,+ft(ASR&DID),,” (ft: fine-
tuning, CSJ(S):standard Japanese speech Corpus, COJADS(D): Corpus of Japanese Dialects)
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where 7y is an adjustable parameter. The flow of adaptation
from a standard language ASR model to a multi-dialect
model using this method is shown in Figure 2. In the first
stage, the SSL and ASR losses are jointly optimized for
standard language corpus; in the second stage, the SSL,
ASR, and DID losses are jointly optimized for dialect cor-
us; and in the third stage, only ASR and DID losses are
jointly optimized for dialect corpus. We denote this model as “
XLSR+{t(SSL&ASR)¢+{t(SSL&ASR&DID),+{t(ASR&DID),,
” and similar abbreviations are used in the next section, where
ft stands for fine-tuning and the subscripts S and D stand for the
standard and dialect corpus used for fine-tuning, respectively.

4. Experiments
4.1. Corpus

The Corpus of Japanese Dialects (COJADS) [3] is used as the
target multi-dialect corpus (denoted as D). It is an extremely re-
alistic dialect corpus that contains natural dialects which tend
to appear in spoken language all over Japan since it contains a
large number of multi-person discourse speech with low record-
ing quality. It occasionally includes utterances with low tran-
scription accuracy. The transcription is available in katakana
only. We used 65h of training data and 2h of evaluation data.
The evaluation data are selected so that there is no overlap be-
tween the training data and the speakers, also the distribution of
age, gender, and region are considered to be as close as possi-
ble. For the validation data, 4k utterances are randomly selected
from the training data. The Corpus of Spontaneous Japanese
(CSJ) [26] is used as the standard language corpus (denoted as
S). It was recorded in a clean environment and the transcrip-
tions were maintained. Only katakana is used in the experiment.
230h of monologue speech lectures are used as training data and
6h as validation data. The evall test dataset of CSJ is used for
evaluation.

4.2. Implementation Details

In the experiments related to the XLSR, fairseq toolkit [27] is
used. We use pretrained XLSRs with 53 languages and 56 kh
of speech. Japanese is included in the 53 languages, but only
in a very small amount (2h). A LARGE model with 7 layers of
feature encoders and 24 layers of Transformer encoders is used.
The maximum number of samples in a batch is set to 1.28m, or
1.2m if SSL learning is included. The learning rate is 3x10~°
and a tri-state larning rate schedule [6] is used. The number
of updates is set to 25k~35k; learning involving ASR&DID



Table 1: Results of ASR model with/without SSL for multi-
dialect speech evaluation dataset (COJADS). Subscripts S and
D stand for the standard and multi-dialect corpus used for fine-
tuning respectively.

Model CER(%) RTF
Hybrid-CTC/Transformerp, 47.0 0.131
XLSR+{t(ASR), 40.6 0.003
XLSR+{t(ASR)g4 60.3 0.003

Table 2: Results of ASR model with/without SSL for standard
Japanese evaluation dataset (CSJ evall)

Model CER(%) RTF
Hybrid-CTC/Transformerg 52 0.188
XLSR+ft(ASR)g 4.2 0.003
XLSR+{t(ASR);, 16.1 0.003

multitask tended to slow convergence. When SSL learning is
not included, no masking process is performed. Single GPU is
used. Other settings are basically the defaults of fairseq. Ex-
aminations revealed that the appropriate values for « are 0.1
for ASR and 0.01 for DID tasks. The values of 8 and - are
both found to be 0.5, which is appropriate for dialect corpus, so
these values are used. For the Hybrid-CTC/Transformer ASR,
experiments are conducted on Espnet2 toolkit [28]. The model
structure is 12-layer encoder and 6-layer decoder. The learning
rate is 5x 1073, The values of X is 0.3. The number of epochs
is set to 50. The beam size during inference is set to 10.

4.3. Comparison of SSL & non-SSL. ASR models

The Hybrid-CTC/Transformer model is compared to the fine-
tuned XLSR ASR. The results of the comparison of charac-
ter error rates (CER) for COJADS and CSJ evaluation data are
shown in Table 1 and 2. The fine-tuned XLSR ASRs perform
better for both the COJADS and CSJ corpus. This indicates that
the knowledge obtained from pretraining works effectively for
ASR. The very high CER of COJADS compared to CSJ indi-
cates that dialect speech recognition for diverse topics and con-
versational speech in a real environment is a challenging task.
In addition, analysis of utterances contained more than 50%
deletion or insertion errors in the evaluation data revealed that
about 10% or more of the utterances are difficult to predict, in-
cluding those with poor transcription accuracy and those spoken
by multiple people at the same time. The problem is that these
utterances reduce the overall performance. In terms of infer-
ence time using a GPU, the Real Time Factor (RTF) is smaller
for models with XL.SR because Hybrid-CTC/Transformer uses
beam search to predict in an autoregressive manner.

4.4. Effect of additional SSL fine-tuning for each corpus

A model adapted with SSL fine-tuning from XLSR using the
respective corpus of COJADS and CSJ is created, and the re-
sults of ASR fine-tuning from there for COJADS are shown in
Table 3. By performing SSL fine-tuning on the COJADS, in
addition to recording environment and age, Japanese dialectal
knowledge is implicitly learned, resulting in a speech represen-
tation more suitable for the ASR of the COJADS. Even when
SSL fine-tuning is performed in the CSJ, an adaptive effect on
the ASR of the COJADS is observed by learning knowledge of
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Table 3: Results of additional SSL fine-tuning of XLSR with
standard (S) / multi-dialect (D) speech datasets

Model CER(%)
XLSR+t(ASR),, 40.6
XLSR+t(SSL),+ft(ASR),  38.8
XLSR+t(SSL)s+ft(ASR)p, 39.2

Table 4: Results of multitask learning of XLSR with ASR and
DID tasks

Model a CER(%) Acc(%)
XLSR+(SSL),,

+t(ASR),, 1.0 388 -
+t(DID-8),, 0 . 91.9
+ft(ASR&DID-8), 0.1 38.6 90.1
+ft(ASR&DID-8), 0.01 40.0 92.6
+ft(ASR&DID-17), 0.1 38.1 90.4

standard Japanese.

4.5. Effect of ASR&DID multitasking learning

Table 4 shows the results comparing models fine-tuned for three
tasks ASR, DID, and joint ASR&DID from the SSL fine-tuned
model of XLSR using COJADS. Two types of DID are com-
pared: eight local classifications and 17 local classifications that
are further subdivided from 8 local classes. The DID fine-tuned
model shows high classification accuracy. The result suggests
that multilingual pretraining worked effectively for DID task as
well as for the language identification task in [9]. However,
when DID is performed on non-speech portions' of 0.5 seconds
each from all recordings, an accuracy of about 65% is obtained,
indicating that differences in recording conditions from region
to region are also learned. Therefore, we think it is necessary to
consider DID modeling that is robust to various recording envi-
ronments as a future challenge. On the other hand, by adjusting
the o of the ASR&DID joint fine-tuning model, higher perfor-
mance is obtained than the respective singletask models. This
indicates that through joint fine-tuning, ASR improves perfor-
mance by incorporating DID’s knowledge and DID improves
performance by incorporating ASR’s knowledge. In addition,
the effect of joint fine-tuning on ASR is enhanced when DID is
subdivided into 17 regions instead of 8.

4.6. Effect of SSL joint fine-tuning from XLSR

Table 5 shows the results comparing the XLSR to SSL&ASR
joint fine-tuning and SSL&ASR&DID joint fine-tuning models
using COJADS. Compared to the SSL fine-tuning model, the
performance of the SSL&ASR joint fine-tuning is slightly lower
and the SSL&ASR&DID joint fine-tuning is slightly higher. It
is believed that learning the knowledge of ASR and DID along
with SSL allows efficient ASR&DID joint fine-tuning.

4.7. Effect of incorporating standard language corpus and
joint fine-tuning

An SSL&ASR jointly fine-tuned model is created from the
XLSR using CSJ. We compare the SSL&ASR jointly fine-tuned

I As listening to the recordings revealed that even label-based non-
speech segments often contain speech, we further exclude likely speech
segments from them by referring to a range of energy values of 0-4kHz.



Table 5: Effect of SSL joint training and multitask learning of
XLSR-based multi-dialect ASR model. DID-17 task is used for
multitask learning.

Model o CER(%) Ace(%)
XLSR

+t(SSL), +ft(ASR), 1.0 3838 -
+i(SSL), +ft(ASR&DID),, 0.1 381 904
+t(SSL&ASR),+t((ASR),, 1.0 390 N
+t(SSL&ASR),+{t(ASR&DID),, 0.1 382 889
+i(SSL&ASR&DID),+ft(ASR&DID), 0.1  37.9  90.1

Table 6: Effect of incorporating standard corpus: SSL&ASR
fine-tuning of XLSR with standard speech (CSJ) — two-step
fine-tuning with multi-dialect speech (COJADS). DID-17 task
is used for multitask learning.

Model o CER(%) Ace(%)
XLSR+t(SSL&ASR)

+t(SSL&ASR),+((ASR), 10 385 N
+i(SSL&ASR),+{t(ASR&DID),, 0.1 378 89.0
+t(SSL&ASR&DID),, +{t(ASR&DID), 0.1 37.0  91.5

model using COJADS with the SSL&ASR&DID jointly fine-
tuned model, and the results are shown in Table 6. Compared
to the results in Table 5, the overall ASR performance is im-
proved by learning knowledge of the standard language CSJ
and adapting it to the dialect of COJADS. Note also that there is
a large performance difference between SSL&ASR joint fine-
tuning and SSL&ASR&DID joint fine-tuning. When the final
ASRDID joint fine-tuning is performed, the SSL&ASR joint
fine-tuning gives a CER of 37.8% and a classification accuracy
of 89.0%, while the SSL&ASR&DID joint fine-tuning has a
CER of 37.0% and a classification accuracy of 91.5%. The sig-
nificant increase in classification accuracy from 90.4% in Table
5 indicates that the use of standard language knowledge through
SSL&ASR&DID joint fine-tuning improves the performance of
DID. The combined effect of the two tasks also increases the
performance of ASR task, and the best results for both tasks are
obtained in this study. The reason why the joint fine-tuning of
SSL&ASR is less effective in adapting to dialects may be be-
cause the model loses the knowledge of the standard language
required for DID and was unable to fully utilize them.

4.8. Breakdown and analysis of results against COJADS
evaluation data

The distribution of CER and classification accuracy per speaker
for the fine-tuned (ASR,DID-8) model from XLSR using CO-
JADS for the evaluation data is shown in Figure 3. Bars repre-
sent speakers, colors represent regions, and lined sections rep-
resent prefectures. For ASR, CER increases with transcription
accuracy and other factors, regardless of region. On the other
hand, for DID, there is a decrease in classification accuracy for
dialects that differ significantly from standard language, such
as Aomori (2) and Kagoshima (46). The audio of Chiba (12),
which shows poor accuracy, contained the chirping of crickets,
indicating that in special recording environments, the classifica-
tion is more acoustic than dialectal and accuracy is reduced.
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4.9. Fine-tuning using XL.SR intermediate output

It is considered that the XLSR contains different knowledge in
each Transformer layer [16]. Figure 4 shows the layer-by-layer
results of the (ASR,DID-8) fine-tuned model for COJADS. For
example, the results at layer 3 are the result of fine-tuning by
clipping up to 3 layers of the XLSR. DID shows a classification
accuracy of more than 90% up to layer 6 and no change up to
layer 18. This indicates that knowledge from layer 6 to 18 may
be unnecessary for the DID task. The use of knowledge in the
latter 18~24 layers further increases the accuracy of the DID
task. This may be due to the fact that linguistic knowledge near
the last layer is effective for DID. On the other hand, knowledge
in all layers is effective for ASR, and performance increases
with each layer.

5. Conclusion

This study presents a baseline for dialect speech recognition
of Japanese using a publicly available Corpus of Japanese Di-
alects. We used the XLSR self-supervised learning model and
adapted it from a standard language corpus to a dialect corpus
by combining multitask learning on SSL, ASR, and DID. The
proposed method achieves a relative character error rate reduc-
tion of 8.9% from a simple ASR fine-tuned model. Plan for the
future work includes developing an algorithm that is robust to
the inaccurate transcription of Corpus of Japanese Dialects and
to the recording environment.
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