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Abstract
The performance of the available end-to-end (E2E) spoken lan-
guage diarization (LD) systems is biased towards primary lan-
guage. This is due to the unavailability of sufficient secondary
language data in code-switched (CS) utterances. Hence, to re-
solve the issue, this work initially uses wav2vec (W2V) pre-
trained embeddings in place of x-vector to reduce the primary
language bias and provides a relative improvement of 30.7%
in terms of Jaccard error rate (JER) over the baseline x-vector
based E2E (X-E2E) framework. Further, the performance of
LD is improved by fine-tuning the W2V embeddings extrac-
tor and modifying the temporal aggregation strategy from sta-
tistical pooling to attention pooling. The Final performance
achieved in terms of JER is 21.8, which provides a relative
improvement of 40.7% and 63.9% over the standalone W2V
fine-tuned and the baseline X-E2E framework, respectively.
Index Terms: Spoken language diarization. wav2vec, Lan-
guage data imbalance

1. Introduction
Spoken language diarization (LD) aims to automatically seg-
ment and label the monolingual segments present in a given
code-switched (CS) utterance. The increasing demand for the
deployment of speech applications in multilingual CS scenar-
ios motivates the development of the LD system [1, 2, 3, 4, 5,
6, 7, 8]. The success of E2E frameworks in speaker diariza-
tion (SD) inspires the development of LD systems using E2E
framework [5, 9, 10]. In [5], an E2E x-vector framework was
presented to perform the LD task. Apart from this, the available
attempts towards the development of LD systems are limited
in the literature. With the Microsoft code-switch (MSCS) data,
some attempts are made that use deepspeech2 (DS2) [11], trans-
former [12], DS2 with secondary language masking (DS2-LM)
[13] and wav2vec (W2V) [14], for performing sub utterance
level language identification (SLID) task. SLID predicts lan-
guage tags for each fixed duration segment of a given utterance,
hence can be considered as the first-level LD system.

Generally, in code-switched utterances, the turn duration of
the primary language is significantly larger than the secondary
language. The same can be observed from the plot depicted
in Figure 1(b). For all three language pairs of the MSCS data,
the average turn duration of the primary language is around 1.5
seconds. Whereas, for the secondary language, the duration is
0.5 seconds. The turn imbalance will lead to data imbalance in
the training set. Figure 1(a) shows the percentage of the pri-
mary and secondary language duration in the training set of the
MSCS corpus. It can be observed from the figure that for three
language pairs, the primary language percentage is more than
80%. Further, in the CS utterances, the available primary and
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Figure 1: MSCS train set: (a) data duration (in %), (b) mono-
lingual segment distribution (in seconds).

secondary languages are spoken by a single speaker. On the
other hand, the secondary language is generally produced by
adapting the language production system of the primary lan-
guage may lead to acoustic similarity. In such a scenario, as
most LD and SLID frameworks use a discriminative strategy to
train the neural network framework, the imbalance in data and
acoustic similarity may bias the system performance towards
the primary language.

In [15] and [14], the issue of primary language bias of the
DS2 and DS2-LM-based framework is discussed, and reduced
the effect by using W2V embeddings. The works also men-
tioned that most of the LD and SLID frameworks use identifica-
tion accuracy (IDA) and equal error rate (EER) as performance
measures. Due to the turn imbalance in test utterances, even if
the system performance is biased towards one class, the IDA
and EER mislead the performance interpretation by providing
high and low values, respectively. Inspired by SD literature this
work suggests the use of Jaccard error rate (JER) for the cali-
bration of LD systems while dealing with the utterances having
turn imbalance [14]. In [15], the W2V embedding extractor
was pre-trained with approximately 1000 hours of data from 23
Indian languages. The pre-training stage uses contrastive di-
vergence loss to optimize the parameters of the framework by
predicting the embedding vectors for the masked portion of an
utterance [16, 17]. A minimum masking duration of 320 ms was
used and hypothesized that the trained network can predict the
embedding corresponds to syllables/sub-words independent of
the language [18, 14]. Therefore, by employing the appropriate
fine-tuning strategy, even with a small amount of data we may
be able to discriminate between the languages. Conversely, the
x-vector-based E2E system may end up providing biased per-
formance due to imbalanced data and acoustic similarity. In-
spired by this fact, this work initially investigates the perfor-
mance bias of the baseline x-vector-based E2E framework and
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then explores the W2V embeddings with the E2E framework
for improving the performance of LD by reducing the primary
language bias.

The rest of the paper is organized as follows: Section 2, dis-
cusses the performance bias of the available LD frameworks and
also discussed the motivation of the work. The proposed W2V-
E2E framework is discussed in Section 3. Section 4, describes
the experimental setup and results. Finally, the conclusion and
future directions are discussed in Section 5.

2. Motivation of using W2V framework
We have considered the MSCS corpus for our experiments by
observing the primary language bias of the corpus and replicat-
ing the few available works using the corpus. The MSCS dataset
has training and development data from three language pairs:
(a) Gujarati-English (GUE), (b) Tamil-English (TAE), and (c)
Telugu-English (TEE). For reproducing the results, the archi-
tectures and the corresponding hyper-parameters reported in the
respective literature are followed here. The obtained IDA and
confusion matrix (average across all language pairs) are pre-
sented in Table 1.

Table 1: Comparison between confusion matrix of the available
approaches for LD, P: primary, S: secondary, and Sil: silence.

Model IDA (%) P S Sil

DS2 [11] 72.2
P 85.2 6.7 8
S 62.1 30.4 7.4

Sil 31.9 4.5 63.5

DS2 - LM [13] 74.7
P 90.6 1.3 7.9
S 79.9 12.3 7.6

Sil 29.1 1.3 69.3

x-vector [5] 81.3
P 90.6 0 9.3
S 65.2 0 34.7

Sil 16.8 0 83.1

W2V [14] 82.0
P 90.9 3.8 5.1
S 31.3 63.9 4.6

Sil 23 4.6 72.3

It can be observed from the table that DS2, DS2-LM, and x-
vector frameworks are providing IDA more than 70%, but their
secondary to secondary language identification rate is 30.4%,
12.3% and 0%, respectively. Further, the secondary language
segments miss-classified to primary are 62.1%, 79.9%, and
65.23% for DS2, DS2-LM, and x-vector frameworks, respec-
tively. These results show that the system performance is biased
towards the primary language. On the other hand, the W2V
framework used for the SLID task can identify secondary to
secondary language 63.9% and secondary to primary language
31.3%. This shows that the W2V embeddings can reduce the
primary language bias to some extent. Hence, motivated by
these results, we have done a rigorous exploration of W2V em-
beddings with the E2E framework to perform the LD task.

3. Proposed W2V based E2E framework
The E2E framework used in this study was originally proposed
in [5, 9]. We have replaced the x-vector extraction framework
with a W2V extractor. The architecture of W2V and its training
strategy used here are borrowed from [17, 14] and [15]. In-
spired by the fact that attention pooling (AP) is a better temporal
aggregation strategy than statistical pooling (SP) [19], we have
performed a comparative analysis using both strategies. The
block diagram of the W2V-E2E architecture using SP (W2V-
ES) and AP (W2V-EA) is shown in Figure 2 (c) and (d). The
W2V pretraining and finetuning strategy is depicted in Figure 2

(a) and (b).

3.1. W2V-E2E architecture

The W2V pre-training and fine-tuning architecture used in [17,
15] are used here without any modification. After performing
pre-training and fine-tuning, the ”A” block shown in Figure 2(a)
and (b) is detached and used as a feature extractor for W2V-ES
and W2V-EA. For W2V-ES, the 768 dimensional W2V features
are extracted from the speech signal in every 20 ms, and then
statistical pooling is performed in every 200 ms. Similarly, For
W2V-EA, the W2V features are passed through two linear lay-
ers of 768 dimension, and then through attention pooling. Af-
ter that, the vectors are aggregated in every 200 ms and again
passed through the linear layer of dimension 1536.

The 1536 dimension output vectors are further passed
through the two linear layers of dimension 3000 and 256 and
given input to the classification and self-attention block. The
self-attention block consists of layer normalization, positional
encoding, another layer normalization followed by J number
of encoder layers, and finally a linear layer with sigmoid ac-
tivation. In this study, the number of self-attention head J is
considered as 4. The input to the classification block is batch-
normalized first and then passed through a linear layer of di-
mension 256 and then given input to the softmax layer. In this
work, the deep clustering is represented using the self-attention
block as mentioned in [9, 5].

3.2. Training strategy

3.2.1. W2V Pre-training

The pre-training W2V architecture shown in Figure 2(a) con-
sists of four operations: (a) feature extraction using convolu-
tional neural networks, (b) quantization using product quantizer,
(c) sequence learning using the transformer, and (d) contrastive
divergence loss. As shown in the figure the output Z is masked
randomly by considering the minimum number of frames (M )
as 16 and letting the transformer predict the output C for the
masked regions. The actual Z is quantized and the output Q
is compared with C using contrastive and divergence loss. As
Z is computed in every 20 ms and the minimum M value is
16, it is expected that during training the architecture learns the
temporal dynamics to predict syllables/sub-words. The detailed
description of the pre-training process can be found at [14, 16].
The pre-training model, which was trained using the 23 Indian
language and originally proposed for automatic speech recog-
nition tasks and available in [16]), is used here.

3.2.2. W2V Fine-tuning

In pre-training, it is expected that the network learns to predict
the embedding belonging to the syllable/sub-words by captur-
ing the long-term temporal dynamics. In Fine-tuning stage, the
objective is to learn the discrimination between the languages.
Hence, the label sequence and corresponding speech utterances
available in the training set of MSCS are used to fine-tune the
W2V framework. As mentioned in Figure 2(b), the ”A” block is
detached from the pre-training framework and then added with
a softmax linear layer and trained using connectionist temporal
loss.

3.2.3. E2E training

The pre-trained and fine-tuned model are used to extract fea-
tures and trained separately using W2V-ES and W2V-EA. For

502



Figure 2: W2V-E2E architecture (a) W2V-pretraining, (b) W2V-finetuning, (c) W2V-ES (d) W2V-EA, SA: self attention, PE: positional
encoding, linear+sig: linear with sigmoid.

training the E2E framework the joint loss (L) of self-attention
(LS) and classification embedding (LE) loss is used. The com-
putation of L is given in Eq. 1. The computation of LE and
LS are defined in Eq 3 and Eq 2, respectively. Where CE(.)
represents cross-entropy loss, Y represents ground truth label
sequence, and XS , XE predicted sequence from self-attention
and classification embedding block, respectively.

L = αLS + (1− α)LE (1)

LS = CE(Y,XS) (2)

LE = CE(Y,XE) (3)

4. Experimental Setup, result, and
discussions

4.1. Dataset description

The experiments were conducted using the MSCS dataset re-
leased by Microsoft [11]. The sub-utterance language ids are
available in each 200 ms duration of each utterance. The train-
ing set was used for training while the development set was
used for testing. The training and testing partition consists of
approximately 16 and 2 hours of data for each language pair
respectively.

4.2. Performance Measure

In the MSCS dataset, the ratio of primary and secondary lan-
guage duration for each utterance has approximately 4 : 1.
Hence the use of accuracy, EER, and FER will provide biased
performance toward the primary language. Similarly, SD liter-
ature suggests using JER instead of DER, if there exists a dura-
tion imbalance between the classes in the test utterances [20].
Therefore, JER is a better performance measure for evaluat-
ing the LD system performance. For comparison purposes, this
study uses accuracy, EER, and DER along with JER to evaluate
the performance of the LD systems.

4.3. Evaluation Setup

The pre-trained model available at [16] is used here. The pre-
trained model is then fine-tuned using the training set of each
language pair for 900 epochs. The pre-trained and fine-tuned

models are detached from the gradient update and used as a fea-
ture extractor to train the W2V-ES and W2V-EA frameworks.
Using the features extracted from the pre-trained network both
W2V-ES and W2V-EA are trained. Similarly using the features
extracted from the fine-tuned network both W2V-ES and W2V-
EA are trained. All four models are trained for 60 epochs with
0.001 as the learning rate, 0.1 as dropout, and 32 as batch size.
After training all four models are considered for testing and
their results are compared. The codes of the implemented ar-
chitectures are publicly available on GitHub.1. For comparison
purposes, the x-vector-based E2E is replicated using the recipe
and hyperparameter mentioned in [5]. Similarly, as proposed in
[14], the standalone W2V fine-tuned architecture is also consid-
ered for testing and comparison.

4.4. Results and Discussion

The obtained results are presented in Table 2. Using the x-
vector-based E2E (X-E2E) the average performance in terms
of IDR, EER, DER, and JER is 81.3%, 6.4%, 22.2, and 60.4,
respectively. Though the performance in terms of IDA is above
80%, the high difference between the DER and JER suggests
the performance is biased towards primary language. Using
W2V-F, as reported in [14], the performance is 82%, 5.3%,
24.3, and 36.8, respectively. These results show a relative im-
provement of 39% in terms of JER. It also shows that the dif-
ference between the DER and JER reduced as compared to the
performance of the X-E2E system. This shows that the W2V
can resolve the primary language bias issue to some extent.

The obtained results using pre-trained W2V features with
W2V-ES in terms of IDA, EER, DER, and JER are 81.5%,
6.1%, 23.2, and 41.8, respectively. Using W2V-EA the per-
formance is 81.4%, 6.1%, 22.8, and 41.4, respectively. It is
observed that the performance of the E2E framework with pre-
trained W2V features is inferior to the stand-alone W2V fine-
tuned framework. However provides a relative improvement of
30.7% using SP and 31.4% using AP, over the performance of
the X-E2E framework in terms of JER.

The performance obtained using the W2V fine-tuned fea-
ture using the W2V-ES framework is 89.1%, 3.5%, 13.2, and
22.9 in terms of IDA, EER, DER, and JER, respectively. Sim-
ilarly using the W2V-EA framework, we have obtained 89.3%,

1https://github.com/jagabandhumishra/W2V-E2E-Language-
Diarization
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Table 2: Performance comparison between W2V-E2E frame-
works and baselines, P: pre-trained, F: Fine-tuned, RI: Rela-
tive improvement in terms of JER, Avg: language pair-wise av-
eraged performance.

Model LP IDA EER DER JER RI

X-E2E [5]
GUE 80.9 6.3 22.9 60.6
TAE 81.4 6.9 22.8 60.5
TEE 81.7 6.0 21.1 60.1
Avg 81.3 6.4 22.2 60.4

W2V-F [14]
GUE 82.2 5.3 23.7 35.4

39.0TAE 80.9 5.6 25.0 37.2
TEE 82.9 5.1 24.2 37.8
Avg 82 5.3 24.3 36.8

P-W2V-ES
GUE 83.1 5.6 22.3 40.5

30.7TAE 79.0 6.9 25.8 45.0
TEE 82.3 5.8 21.7 39.9
Avg 81.5 6.1 23.2 41.8

P-W2V-EA
GUE 82.7 5.7 21.0 38.4

31.4TAE 80.8 6.3 23.7 43.5
TEE 80.6 6.4 23.8 42.3
Avg 81.4 6.1 22.8 41.4

F-W2V-ES
GUE 89.2 3.5 12.8 23.0

62.0TAE 88.6 3.7 14.0 24.2
TEE 89.5 3.4 12.9 21.5
Avg 89.1 3.5 13.2 22.9

F-W2V-EA
GUE 89.4 3.5 12.8 22.8

62.6TAE 88.7 3.7 13.9 23.8
TEE 89.9 3.3 11.3 20.9
Avg 89.3 3.5 12.7 22.5

X-F-W2V-ES
GUE 90.0 3.3 12.1 22.8

63.0TAE 89.4 3.5 13.0 23.8
TEE 90.4 3.1 10.7 20.5
Avg 89.9 3.3 11.9 22.3

X-F-W2V-EA
GUE 90.0 3.3 11.3 22.4

63.9TAE 89.8 3.5 11.8 23.2
TEE 90.5 3.1 10.7 20.0
Avg 90.1 3.3 11.2 21.8

3.5%, 12.7, and 22.5, respectively. From the performance,
it is observed that the system’s performance further improves
by considering fine-tuned W2V features. This improved ar-
chitecture provides a relative improvement of 62% using SP
and 62.6% using AP, over the X-E2E framework in terms of
JER. Similarly, considering the identical framework as X-E2E,
and only replacing the input of MFCC features with finetuned
wav2vec features (X-F-W2V-ES) provides the performance of
89.9%, 3.3%, 11.9, and 22.3, respectively. The system pro-
vides a relative improvement of 63% over the baseline in terms
of JER. Further, by modifying the aggregation strategy to AP
(X-F-W2V-EA), the performance further improved and provide
a relative improvement of 63.9% over the baseline in terms of
JER.

The experimental observation is that the system using fine-
tuned W2V features along with AP provides the best perfor-
mance. It is also observed that the use of AP provides better
performance than the SP. Further, to observe the language dis-
crimination ability of the proposed models over the baseline X-
E2E system, the embedding vectors are extracted just before the
self-attention block and using t-SNE, projected to two dimen-
sions and depicted in Figure 3. From the plot, it is observed that
for all the plots the vectors belonging to silence mostly form a
separate cluster, whereas the overlap between the primary and
secondary language cluster reduces by moving from X-E2E to
P-W2V-ES and is further reduced by moving to F-W2V-ES and
F-W2V-EA framework.

The performance bias can be observed using the confusion
matrix of the F-W2V-EA system along with baseline X-E2E and
standalone W2V-F system as tabulated in Table 3. From the ta-
ble, it can be observed that the F-W2V-EA system has the sec-
ondary to secondary language identification rate of 79.8%, fol-
lowed by 63.9% and 0% using W2V-F and X-E2E system. Sim-

-100 0 100 200

-50

0

50
Sil

P

S

-100 0 100
-50

0

50

-100 0 100

-50

0

50

100

-100 0 100

-50

0

50

100

(a) (b)

(c) (d)

Figure 3: The t-SNE distribution obtained from : (a) X-E2E,
(b) P-W2V-ES, (c) F-W2V-ES, and (d) F-W2V-EA architectures,
respectively.

Table 3: Comparison using confusion matrix, P: primary, S:
secondary, and Sil: silence.

Model P S Sil

X-E2E
P 90.6 0 9.3
S 65.2 0 34.7
Sil 16.8 0 83.1

W2V-F
P 90.9 3.8 5.1
S 31.3 63.9 4.6
Sil 23 4.6 72.3

F-W2V-EA
P 85.5 4.3 10.1
S 7.7 79.8 12.3
Sil 5.8 3.8 90.3

ilarly, the secondary to primary language identification rate was
reduced to 7.7% followed by 31.3% and 65.2% using W2V-F
and X-E2E system. This study can be concludes that the use of
fine-tuned W2V features using the E2E framework are able to
resolve the primary language bias issue and improve the overall
LD performance to 21.8 in terms of JER.

5. Conclusion and Future work
This study reported the primary language bias of the existing
systems. Inspired by the learning strategy of W2V, this work
proposed an end-to-end framework using fine-tuned W2V ar-
chitecture as a feature extractor. The proposed approach can
resolve the primary language bias and provides a relative im-
provement of 63.9% over the baseline in terms of JER. The
study also shows that while dealing with turn imbalance data,
JER is a better measure to calibrate the LD system performance
compared to DER, IDR, and EER. Further, it is also observed
that irrespective of using pre-trained or fine-tuned features, the
attention pooling-based temporal aggregation provides better
performance over statistical pooling. In the future, the frame-
work will be further explored to improve the performance of the
LD system.
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