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Abstract

There is increasing interest in the use of the LEArnable Front-
end (LEAF) in a variety of speech processing systems. How-
ever, there is a dearth of analyses of what is actually learnt and
the relative importance of training the different components of
the front-end. In this paper, we investigate this question on
keyword spotting, speech-based emotion recognition and lan-
guage identification tasks and find that the filters for spectral
decomposition and the low pass filter used to estimate spectral
energy variations exhibit no learning and the per-channel en-
ergy normalisation (PCEN) is the key component that is learnt.
Following this, we explore the potential of adapting only the
PCEN layer with a small amount of noisy data to enable it to
learn appropriate dynamic range compression that better suits
the noise conditions. This in turn enables a system trained
on clean speech to work more accurately on noisy test data as
demonstrated by the experimental results reported in this paper.
Index Terms: learnable audio front-end, adaptive front-end,
pre-channel energy normalization, speech signal classification

1. Introduction

The speech front-end is a crucial component in speech signal
classification systems, and has been the focus of research for
many decades. The Mel filterbank [1] leads to representations
inspired by our understanding of human perception, and is ar-
guably the most widely used front-end across a range of dif-
ferent speech applications. With the advent of deep learning
systems, there has been an interest in end-to-end systems that
attempt to learn the optimal transformations to extract informa-
tion from speech waveforms for any target application [2-5].
More recently, focus has shifted to learnable front-ends that
constraints the architecture of the front-end but allows the
model parameters to be learnt in conjunction with the back-
end [6-12]. They have been employed in a wide range of ap-
plications, including but not limited to speaker verification [7],
spoofing detection [9], and emotion recognition [8].

A number of general-purposed learnable front-ends such
as Time-Domain Filterbank (TD-Fbank) [12], SincNet [10],
CGCNN [11] and LEArnable Front-end (LEAF) [6] have been
developed recently. Among these, LEAF stands out as hav-
ing fewer parameters and higher reported accuracy in tasks
such as audio events classification. Its universal representation
generated from raw speech signals has also made it applica-
ble in other audio-related tasks, such as medical acoustic sig-
nal feature learning [13], analog acoustic recognition [14], bird
activity detection [15], speaker verification [16], and limited-
vocabulary speech recognition tasks [17]. Despite these suc-
cesses, little is known about what is exactly learnt by LEAF
from speech signals.

Analyses of the LEAF model have suggested that one of
its components, Per-Channel Energy Normalization (PCEN)
plays an important role in effectively compensating for the im-
pact of environmental noise on speech intelligibility [18-21].
PCEN has also been widely applied in acoustic scene classifi-
cation [22] and long-distance bioacoustic event detection [23].
However, beyond this, there have been limited analyses and in-
sights in the operation of LEAF. To address this shortcoming,
we investigate which components of LEAF learn during model
training and to what extent.

In this paper, we demonstrate that only the PCEN layer of
the broader LEAF model learns during training and there is no
observable change in the characteristics of any of the other com-
ponents away from their initial values. Following this, we lever-
age our findings to develop a noise adaptation strategy whereby
only the PCEN layer of LEAF is adapted using a small amount
of noisy data to enable the LEAF model to be used under noisy
conditions.

2. What is learnt by LEAF?
2.1. LEAF

LEAF is a general-purpose audio front-end designed for au-
dio event classification [6]. It mainly comprises three learn-
able and one non-learnable elements: Spectral Decomposition,
Energy Estimation (non-learnable), Smoothing, and Dynamic
Range Compression. As depicted in Figure 1, a frame of speech
with M samples passes through a parallel filterbank of N Gabor
filters [24], which is initialised to be equally spaced along the
mel-frequency scale. During training, both the centre frequen-
cies (f;) and bandwidths (BW;) of all filters can be learnt. The
filterbank is followed by energy estimation implemented by a
sample-wise squaring operation, which in turn is smoothed us-
ing a low pass filter. The low pass filtering is implemented as
a pooling operation comprising of a Gaussian Low-pass Filters
(LPF), an approach that has been shown to be effective with 2D
features [25]. The learnable parameter is the standard deviation
o; (equivalently its bandwidth) of the Gaussian LPF in each fre-
quency channel.

Finally, the per channel energy compression (PCEN) acts as
an input energy level-dependent gain controller that computes
appropriate gains to enhance or attenuate signals in each fre-
quency channel [26]. The PCEN layer for the i*" frequency
channel takes as input the smoothed energy estimates produced
by the low pass filter layer, E/[n, ], and is formulated as:
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where M [n, ] is the smoothed version of the input represen-
tation achieved by a first-order infinite impulse response (IIR)

PCEN[n,i] = (
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filter as expressed in Equation 2 with a learnable smoothing fac-
tor, s;.

M(n,i] = siE[n,i] + (1 — s;)M[n — 1,1]. 2)
As illustrated in Figure 1, the PCEN layer has four learnable
parameters (s, as, 0;, ;) per frequency channel.
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Figure 1: An overview of LEAF (the input speech frame contains
M samples).

2.2. Analysis of LEAF Parameters: Experimental Setup

To investigate what is learnt by LEAF, we train LEAF on three
of the tasks where its performance has been perviously reported:
emotion recognition, keyword spotting, and language identifi-
cation [6]. The tasks were chosen to represent a range of speech
processing applications as well as prediction accuracies ranging
from quite high to somewhat low (refer Table 1). Following
this, we compare the spectral and compression characteristics
of the three learnable components of LEAF before and after
training.

For these analyses, we replicate the dataset settings re-
ported in [27]. The keyword spotting task is trained on Speech-
CommandsV2 dataset [28], emotion recognition experiments
were carried out on CREMA-D dataset [29], and we use Vox-
forge [30] for language identification. All three datasets are
sampled at 16kHz. For all three tasks, we utilise Efficent-
NetBO [31] as the back-end, which is a lightweight Convolution
Neural Network (CNN) based classification network.

Prior to training, the LEAF model was initialised as de-
scribed in [6]. Specifically, we initialised the 40 Gabor filters
using the mel-scale and set the input window size to 401 sam-
ples with a hop size of 160 samples, corresponding to 25ms for
audio sampled at 16kHz. The Gaussian LPFs were initialised
with a standard deviation of 0.4 for all channels. The initial val-
ues of the PCEN layer parameters in each frequency channel
were setto a« = 0.96, vy = 2,6 = 2, and s = 0.04.

For training the models, we utilised the ADAM optimiser
with a fixed learning rate of 10™*, and employed mini-batches
of size 256. We set the input sequence length for SpeechCom-
mandsV2 and Voxforge to 1 second, and for CREMA-D as 3
seconds, based on the audio files durations in each dataset. To
ensure consistent loudness range across different recordings,
we rescaled the raw speech signals to a range between 15 dB
Sound Pressure Level (SPL) and 30 dB SPL. In the test phase,
we adopted the approach in [27], and compute predictions for
non-overlapping one-second segments and averaging the logits
across the entire recording.
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Table 1 presents the test accuracy for all tasks with four dif-
ferent LEAF model settings. The “Untrained” settings indicate
that all parts of LEAF were frozen and the initial values were
not updated during training. The “Filter Trained” settings in-
dicate that Gabor filters and Gaussian low pass filters were set
to be trainable, and their parameters would be updated during
model training (but the PCEN layer parameters would not be
updated). Conversly, the “PCEN Trained” settings refer to the
condition where only the PCEN layer parameters were trained
and the Gabor filter and Gaussian low pass filter parameters
were kept unchanged from their initial values. Finally, “Fully
Trained” settings refer to the standard setting where all param-
eters are trainable.

From the table, the first interesting observation that stands
out is that there is little difference between the various trained
and untrained versions of LEAF across all three tasks. It is
worth noting that for the emotion recognition task, where the
untrained LEAF shows the highest accuracy, we used the data
partitioning reported in [27], whereby the data was partitioned
by shuffling speaker groups and segmenting the data to en-
sure speaker independence in each partition. For the other two
speech tasks, we used the data partitions as per the original
dataset release. These results prompt the question “What is
learnt by the LEAF model?”. Specifically, through our anal-
yses, we aim to answer the question: Which element of the
model has undergone the most significant changes as a result
of the training?

Table 1: Classification accuracy of LEAF models (mean +
std.dev, over three runs).

Keyword Emotion Language

Spotting Recognition  Identification
Untrained 9478 £ 0.1 44.01+8.6 91.73+0.4
PCEN Trained 95.07+0.2 39.66+1.5 89.95+2.1
Filters Trained 94.62+0.1 40.11+1.3 95.13+1.4
Fully Trained  95.18 £0.3 41.10+1.4 91.03+0.6

2.3. Analysis of LEAF Parameters: Results

Extracting the weights from the fully trained and untrained
LEAF models, we compute the centre frequencies and band-
widths of the Gabor filters as well as magnitude responses of
the Gaussian low pass filters and compare them to each other
(trained vs untrained across all three tasks). We also reconstruct
the compression function of the PCEN layers and compare them
to each other. These comparisons are shown in Figure 2(a)-2(f).

a) Gabor Filterbank: Figures 2(a) and 2(b) represent the
changes in centre frequencies and bandwidths of each filter of
the 40 Gabor filters across three tasks as well as the initial val-
ues. No appreciable deviations from the intial values can be
observed for any of the trained models in any of the three tasks.
These results strongly indicate that the initial Gabor filters may
be optimal and learning does not help.

b) Gaussian Lowpass Filterbank: In Figure 2(c), we plot
the frequency response of all 40 Gaussian lowpass filters for
all three tasks. Once again, there appears to be no appreciable
deviation from the initial values in the pass band of the low pass
filters. This again suggests there may be no benefit to learning
these filters.

¢) PCEN Range Compression: In Figures 2(e) to 2(f), we
present input level dependent gain imparted by the PCEN layer
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Figure 2: Visualising learnt information of LEAF across three tasks.

across all frequency channels in each of the three tasks. To
visualise this, we reconstruct the trained and untrained PCEN
functions from Equations 1 and 2 and plot the PCEN gains as
a function of input energy E[n,i]. The curves in Figures 2(e)
to 2(f) transition from light green (for the 1°* channel) to dark
purple (for the 40*" channel), represent the learnt gain charac-
teristics for all 40 channels across the three tasks. It can be seen
that the gain curves for the learnt models differ from that of the
untrained model across all three tasks.

Taken together these results suggest that of three poten-
tially learnable components of the LEAF model, the Gabor fil-
terbank for spectral decomposition, the Gaussian low pass fil-
ter for energy smoothing and the PCEN which offers dynamic
range compression, only the PCEN layers appear to be actu-
ally learning anything. Consequently, constraining the learning
to only this layer of the LEAF model would significantly cut
down the number of trainable parameters in the model, leading
to more efficient learning. This in turn suggests a noise adapta-
tion scheme involving a small set of noisy speech samples might
enable a LEAF model trained on clean speech to be employed
in noisy conditions. This hypothesis is explored in the rest of
the paper.

3. Adapting PCEN to Noisy Environments

We explore the hypothesis that adapting or tuning the PCEN
layer in LEAF can enhance the accuracy of speech classification
in noisy environments using a limited amount of noisy adapta-
tion data. To test this hypothesis, we compare the performance
of a system with a PCEN-adapted LEAF model to that of one
trained on clean speech. For reference we also include a model
trairlled entirely on a large amount of noisy data in the compari-
son .

Uhttps://github.com/Hanyu-Meng/Adapting-LEAF
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3.1. Experiment Setups
3.1.1. Dataset and Partition

Of the three speech procesing tasks, we choose the emotion
recognition task to test the proposed PCEN adaptation scheme
since it had the lowest accuracy. The CREMA-D dataset for
speech emotion recognition consists of 91 speakers and 6 emo-
tions [29], with each speaker having an almost equal number of
utterances. When partitioning CREMA-D for this set of exper-
iments, we use different partitions from those used in section
2.2. Specifically, we split the data based on sentences to ensure
that each partition contained utterances from each speaker in or-
der to minimise the impact of speaker variability on the results.
As illustrated in Figure 3, we used 9 sentences for training, 1
sentence for validation, and the remaining 2 sentences for test-
ing. Consequently, the training set contained 5811 recordings,
validation set contained 545, and the test set contained 1086.
For adaptation, we selected one sentence from the training set
(comprising of 546 recordings) as the adaptation data to which
we add different types of noise (white noise and babble noise)
at different Signal-to-Noise Ratios (SNRs).

3.1.2. Experimental Setup

For this experiment, we compared four models that had the

same structure as the system used in the experiments reported

in section 2.2, but with varying training setups as illustrated in

Figure 4. These models are:

¢ Clean Trained: Trained on the entire noise-free training set
and it serves as a baseline.

* Noisy Trained: Trained on a noisy version of the entire train-
ing data.

* Before Adaptation (BA): Trained on the noise-free training
set without including adaptation data. This provides a refer-
ence level for performance prior to adaptation (see Figure 3).



*« PCEN Adaptation (PA): This is the BA model with the
PCEN layer adapted using the noisy adaptation data.

Sentences
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Figure 3: Data partitions in the CREMA-D dataset for PCEN
adaptation experiments.
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Figure 4: Overview of the PCEN adaptation experimental setup.

3.2. Results and Analysis

To verify the hypothesis proposed at the beginning of Section
3, we tested the adaptation of PCEN using both stationary and
non-stationary noise.

3.2.1. Gaussian Noise Adaptation

The left pane in Figure 5 shows the classification accuracy for
all four models tested by adding different levels of Gaussian
noise to the clean test data in order to obtain SNR in the range
of 0 dB to 20 dB. The results suggest that training the model
with Gaussian noise helps the model learn the pattern of noise
and improves its robustness. Further, the models trained on only
clean data perform poorly when exposed to Gaussian noise.
However, after adapting the PCEN layer with a small amount
of noisy data, the impact of noise on accuracy can be somewhat
mitigated as can be seen by comparing the performance Before
Adaptation (BA model) to that after adaptation (PA model).

3.2.2. Babble Noise Adaptation

We also repeated the above experiment using babble noise in-
stead of white noise. To simulate babble noise, we followed
the data augmentation approach used in [32] and used the MU-
SAN dataset, which contains 60 hours of speech from 12 lan-
guages [33]. Specifically, we randomly selected three speech
recordings from MUSAN, mixed them together, and added
them to the clean signal to simulate babble noise with SNR
ranging from 0 dB to 20 dB. The right pane in Figure 5 shows
how the accuracy of the four models changes under different
levels of babble noise.

The results suggest that training with noisy data is not as ef-
fective under babble noise conditions. This might be due to the
greater similarity between noise and speech in this case. How-
ever, we can observe from the graph that adapting PCEN with
babble noise may be quite effective in allowing the model to be
used under noisy conditions.
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Figure 5: Accuracy of PCEN adaptation experiments on the
CREMA-D dataset for different levels of Gaussian noise (left)
and babble noise (right).

4. Conclusion

In this study, we sought to answer the question 'What is learnt
by LEAF?’, by comparing the extent of change in the char-
acteristics of the different learnable components of the LEAF
model from their initial values prior to training. This analysis
was repeated on multiple speech processing tasks, and consis-
tently our analyses revealed that only the PCEN layer changes
in response to training. The filterbank and low pass filters em-
ployed for spectral decomposition and spectral energy smooth-
ing remained unchanged for all three tasks. This suggests that
the actual learning in the LEArnable Front-end occurs within
a much lower dimensional subspace of the parameter space of
the model. Following this, we developed a model adaptation
scheme constrained to this subspace (PCEN layer only) using a
small amount of noisy training data to adapt a LEAF trained on
clean speech to operate more effectively in noisy conditions.
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