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Abstract
Alzheimer’s dementia is a neurodegenerative disease that af-
fects millions of people worldwide. Early detection of
Alzheimer’s dementia is crucial for effective treatment and
management of the disease. In this paper, we present a cross-
lingual approach for detecting Alzheimer’s dementia from
speech, based on multiple feature streams that capture the indi-
vidual’s speech and conversational interactions. In order to vali-
date the ability of the features to perform well in cross-linguistic
scenarios, we evaluate in a zero-shot setup, where the target do-
main is a language that was not available during training and a
few-shot setup, where only limited data is available. Exper-
imental results show that an ensemble system using the fea-
tures trained on English and evaluated on Greek outperforms the
baseline system by 4.4 %. Further experiments show promising
zero-shot and few-shot performance on a similar Spanish task.
Index Terms: Alzheimer’s Dementia, language-independent
features, cross-lingual speech recognition

1. Introduction
Dementia is a disorder characterized by a long-term decrease of
a wide range of cognitive functionalities: progressive impair-
ments in memory, thinking and behaviors. Alzheimer’s disease
(AD) is the most common cause of dementia and can be chal-
lenging to diagnose [1]. While neuropsychological tests such as
the mini-mental state examination (MMSE) [2] are commonly
used for diagnosis, their results may not always be reliable [3].
To overcome this challenge, researchers have turned to signal
processing and machine learning (ML) techniques to develop
accurate and efficient methods for AD detection [4].

An essential condition to employ automated detection tech-
niques is the collection of suitable speech corpora which can be
utilized in order to train and evaluate ML models. The Pitt cor-
pus from the Dementiabank 1 is a widely used publicly available
speech dataset [5]. To address biases and imbalances in the data,
the ADReSS Challenge [6] recently introduced a standardized
version of the dataset. Furthermore, the ADReSSo Challenge
[7] mandated solving the problem using only speech data with-
out manual text transcriptions.

To address the challenges, models utilize features from both
audio and text modalities, which are derived from either do-
main knowledge (disfluencies frequently exhibited by AD pa-
tients) or pre-trained models [8, 9, 10, 11, 12, 13]. A compara-
tive study demonstrated that fine-tuning text transformers such

1https://dementia.talkbank.org/

as BERT can achieve higher accuracy than using handcrafted
features [14]. In a recent work [15], an ensemble of different
models was employed with speech paralinguistic, deep acoustic
and text features. Another study [10] explored cognitive fea-
tures that characterize losses of train of thought in addition to
linguistic, speech, and disfluency features such as pauses and
word rate. In their work, Yuan et al. [16] achieved high ac-
curacy by utilizing the transformer model ERNIE along with
encoding of pauses.

All the previously mentioned works focus on detecting AD
using English language speech samples, training and evaluat-
ing ML models on English speaking subjects. The prevalence
of English language in related works leads to some concern in
whether the proposed methods can be transferred in other lan-
guages, possibly with quite different characteristics. While a
few other studies, such as those using Mandarin Chinese [17]
and Spanish [18], have explored the use of other languages, they
still take a monolingual perspective, making their approaches
language-specific, tailored exactly for speech samples from lan-
guages that they were trained on. However, a more demanding
task would be to find powerful and predictive features that trans-
fer across languages. Gosztolya et al. [19] extracted hesitation
speech markers for both English and Hungarian, training sepa-
rate ASR systems for each language. Interestingly, they found
that even if the ASR systems were interchanged, the predic-
tive power of these markers remained high. In contrast, Pérez-
Toro et al. [20] take a different approach to study cross-lingual
capabilities. They pre-train a model for AD detection in En-
glish, which is then transferred to achieve higher performance
in Spanish-speaking subjects.

With regards to the issue of cross-lingual performance ro-
bustness, for example methods [19, 20] assumed that, during
training, samples from both languages would be available. In
this work, we depart from this assumption to study the cross-
lingual problem on more challenging scenarios, to explore the
cross-lingual capabilities of certain features. In the first set-
ting, we assume that the models are trained on a source lan-
guage (English) and evaluated on a different language (target),
in a zero-shot manner. Our work for this setting started during
our participation in the ICASSP 2023 Signal Processing Grand
Challenge “ADReSS-M” [21], where the organizers provided a
dataset with recordings of English-speaking subjects, whereas
the validation and test sets contain samples from Greek par-
ticipants. Extending the work conducted in this challenge, we
investigate the performance of our method in the Spanish lan-
guage in both zero-shot and few-shot manners, i.e. when no
instances at all, or just a few instances are available from the
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target language.
In both of these experimental settings, our proposed method

combines four basic sets of signals, namely: stop-word ratio
based on speech-to-text, paralinguistic information (modelled
by low-level features and high-level outputs of models such as
emotion, arousal and speaking rate), speaker interaction dynam-
ics (utilizing speaker diarization predictions), along with demo-
graphic information about the patients.

In summary, our contributions are: 1) language-
independent features that do not require manual transcripts, 2)
an ensemble system that, using the above features, achieves an
absolute improvement of 4.4% compared to the baseline on the
“ADReSS-M challenge” and 3) zero-shot and few-shot evalua-
tion of the features on a different-domain Spanish dataset. 2

2. Methodology
2.1. Datasets

In our work, we used three distinct sources of data, containing
speech from different languages, namely English, Greek and
Spanish. In this Section, we provide more details regarding the
datasets used in our study. In Table 1, we illustrate demographic
information for the subjects that participated in the collection of
each dataset.

2.1.1. English

For English, we used the training data provided by the orga-
nizers of [21]. This set contains descriptions of the Cookie
Theft picture [5], with some recordings originating from De-
mentiabank. The dataset contains a total of 237 recordings,
where 122 of them (51.47%) are labelled as “Probable AD”,
with the rest (115) corresponding to healthy subjects. An impor-
tant challenge associated with these recordings is that they con-
tain speech content from both the patient and the interviewer.
We treat the audios in this form, without applying any manual
preprocessing steps. Their mean duration is 76.9 seconds, with
a standard deviation of 37.4 seconds.

2.1.2. Greek

For Greek, the overall setting is quite similar to the English
dataset, the Greek-speaking subjects are describing a picture
which represents a lion lying with a cub in the dessert while eat-
ing. Likewise, this dataset was obtained from the ADReSS-M
challenge. It contains two subsets, one for validation purposes
(8 samples) and one for testing (46 samples). The validation
set contains 4 AD and 4 Healthy Control (HC) samples but the
labels from the test set remained undisclosed. On average, the
files from this dataset have a duration of 38± 20.1 seconds.

2.1.3. Spanish

In the case of Spanish, we utilize the dataset assembled by
Ivanova et al. [22], also present in Dementiabank. This set
contains recordings from subjects performing a standardized
reading task. The subjects were asked to read a paragraph
from a Spanish novel. This collection of data is consisted of
197 samples labelled as Healthy Control (HC), and 74 samples
labelled as AD. However, there are 91 audio files coming
from a third category, which characterizes patients with Mild
Cognitive Impairment (MCI). We dismiss this class in order

2The code is available here: https://bitbucket.org/
behavioralsignals/adress-m-2023/

conform with the English and Greek datasets which contain
only the two previous labels. The average duration of the
samples is 46.63 seconds (with a standard deviation of 24
seconds).

One interesting aspect for the datasets chosen in our study is
their differences in terms of spontaneity. In particular, the En-
glish and Greek datasets contain purely spontaneous speech,
since participants are asked to describe a picture without any
prior preparation. In the Spanish dataset, however, the degree
of speech spontaneity and naturalness is limited since the sub-
jects read a paragraph verbatim. From a ML viewpoint, this
discrepancy poses another great challenge, alongside the need
of good performance across languages, which makes the task of
finding generalizable features even harder.

2.2. Feature Extraction

In this section, we describe the feature extraction procedure. For
this purpose, we have adopted 6 feature sets from 4 different
modalities.

2.2.1. Interaction dynamics features (Utt)

Timestamps for the speakers’ utterances were extracted using
the publicly available diarization system of PyAnnote Audio li-
brary [23]. The model’s speaker timestamps provide valuable
information, and they are extracted in a fully automated fashion.
In other studies, this segmentation step was performed manually
according to the timestamps provided in the dataset, however
this is impractical and as the dataset size grows we expect this
information to be absent. We extract a total of 7 features: 5 of
them are related to utterance duration statistics (min, max, me-
dian, mean, std). Additionally, we have included one feature for
the ratio of speech duration to the entire audio duration, as well
as one for the average duration of pauses between utterances.

2.2.2. Paralinguistics: Hand-crafted features (Au:H)

Low level, hand-crafted audio features were extracted through
the use of the pyAudioAnalysis library [24]. In particu-
lar, we have used 64 frame level features, including MFCCs,
ZCR, Spectral Centroid and Chroma features and correspond-
ing segment-level statistics (mean and std). We have adopted
a short-term window size of 50msecs and a segment size of 1
second. These acoustic features are computed per utterance and
then aggregated per file through a weighted sum, where each
feature is weighted based on the duration of its utterance.

2.2.3. Paralinguistics: TRILLsson embeddings (Au:Tr)

We use the TRILLsson model [25] to get a 1024-dimension
embedding for each speech segment using the previously men-
tioned speaker utterances (see Interaction Dynamics) and then
compute the weighted average for the whole recording, us-
ing weights proportional to the respective segment durations.
Specifically we use the second largest publicly available model
(the 4th variant) which utilizes the Audio Spectrogram Trans-
former (AST) [26] architecture, since it performs best on the
tasks of dysarthria detection and speech emotion recognition.

2.2.4. Speaking rate & arousal embeddings (Au:Sr)

Speech-behavioral features were computed from pre-trained
CNN-based classifiers that recognize speaking rate (slow, nor-
mal, fast) and speech arousal (weak, normal, strong). The clas-
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Lang. Count Years Education Years MMSE
ENG AD Label - F/M 79/43 69.92 (6.36) / 68.37 (7.59) 11.51 (2.37) / 12.79 (2.85) 17.36 (5.07) / 18.72 (6.01)

HC Label - F/M 75/40 65.62 (6.18) / 66.86 (6.40) 14.02 (2.67) / 13.92 (2.56) 29.00 (1.29) / 28.90 (0.9)
GR (val.) AD Label - F/M 3/1 78.67 (1.70) / 69 (-) 7.67 (7.04) / 16 (-) 23.67 (2.87) / 29 (-)

HC Label - F/M 3/1 66.33 (6.34) / 69 (-) 8.33 (3.30) / 16 (-) 29.33 (0.47) / 26 (-)
GR (test.) F/M (No labels) 35/11 69.43 (7.28) / 67.55 (9.13) 11.57 (3.90) / 10.73 (3.86) -

SP AD Label - F/M 44/30 79.70 (7.98) / 79.17 (7.69) 7.78 (3.05) / 10.27 (4.80) 18.91 (4.66) / 21.53 (5.40)
HC Label - F/M 139/58 75.62 (7.39) / 75.22 (9.03) 9.41 (3.77) / 9.97 (3.96) 28.18 (1.97) / 28.43 (1.64)

Table 1: Mean (std) values for metadata information. F (M) stands for Female (Male), AD for Alzheimer’s Dementia, HC for Healthy
Control. We report these values per AD label (AD or HC), except for the Greek test set, for which the label information isn’t available.

Attempt Model ASR Utt Au:H Au:Tr Au:Sr MD F1-CV (%) Acc-Val (%) Acc-Test (%)
Attempt 1 SVM ✓ ✓ ✓ 72.1 75.0 63.0
Attempt 2 SVM ✓ ✓ ✓ 77.6 87.5 63.0
Attempt 3 XGB ✓ ✓ ✓ ✓ ✓ 70.5 50.0 69.6
Attempt 4 XGB ✓ ✓ ✓ ✓ 74.3 75.0 71.7

Attempt 5 Majority Vote - 75.0 78.3

Table 2: Cross-Validation F1 on English train set (F1-CV), Accuracy on Greek validation and test sets.

sifiers act on fixed-sized segments (3-sec) of the input audio.
Similarly to previous sets of features, we obtain the per-class
posterior (3 per task) for all 3-sec segments of the calculated ut-
terances, and then we aggregate them by calculating their mean
and std, amounting to 6 features per task (12 in total).

2.2.5. Stop-word ratio (ASR)

We obtained transcriptions using OpenAI’s Whisper [27]
medium model, which demonstrated adequate performance in
transcribing the train set. Whisper has support for both Span-
ish and Greek languages, hence it can be used for multilingual
transcription with relatively low WER. After obtaining the tran-
scripts, we extract the percentage of stop-words as a feature,
where we utilized the lexicons of SpaCy library [28] as collec-
tions of common stop words for English, Greek and Spanish
languages. Similarly to the segmentation step, it is important
to note that our method does not require any ground truth tran-
scripts for each recording. The automated extraction of tran-
scriptions may introduce some noise due to WER, but it is far
more realistic as dataset size grows and only speech data are
available.

2.2.6. Metadata (MD)

For this set of features, we included the age, gender and educa-
tional level of the patients as found in the metadata files of each
audio recording. Missing educational levels were replaced by
the respective mean value calculated in the training dataset set.

3. Experimental Results
In this section, we discuss the experiments that were conducted
in order to evaluate the performance of our proposed features,
in the task of AD classification.

3.1. Zero-Shot Evaluation on Greek

In this setup, the models were trained on the English dataset
from “ADReSS-M” [21] and evaluated on the Greek valida-
tion and test sets. This evaluation is conducted in a zero-shot
manner, since no data from the target language are seen during

training. While it would be valuable to evaluate the proposed
features in a few-shot manner, we were unable to do so due to
the absence of ground truth labels for the Greek test set. We
mainly use test set accuracy as the metric of comparison. At the
time of development, the groundtruth labels from test set were
unknown. To benchmark performance, we consider as baseline
the model proposed by the challenge’s organizers. The baseline
approach achieved 73.9% classification accuracy, utilizing the
eGeMAPS [29] speech features and the metadata information.

Our approach was to train numerous models by selectively
concatenating features from the different modalities described
in Section 2. We also experimented with applying PCA in order
reduce the feature dimensionality and standardization to zero
mean and unit variance. In this specific setup, since our goal
is to maximize performance on the challenge’s test set, we uti-
lized a grid search strategy over the following hyperparameters
to achieve maximum performance per individual model:

• Modalities of input features to include per model
• No PCA, PCA (10, 20, 30 components)
• Classifier: Support Vector Machines (SVMs) or XGBoost
• Feature scaling based on train, validation or test set statistics

Our final selection included 4 different models based on the
cross-validation performance on the train set and accuracy on
the validation set. We made sure to include each modality in at
least one model to encapsulate as much information as possi-
ble and exploit the inherent value each had to offer. The final
model was a voting ensemble of the four selected models. Its
prediction corresponded to the majority vote and ties were re-
solved by selecting the class with the highest sum of posterior
probabilities across all 4 models of the ensemble.

The results of these experiments are displayed in Table 2.
Our best model, which is the ensemble of the first four models,
achieves 78.3% classification accuracy, outperforming the base-
line method by an absolute of 4.4%. The test set performance
of our method was disclosed to us by the challenge organizers.

3.2. Evaluation on Spanish

To further evaluate the cross-lingual generalization ability of
our features, we conducted zero-shot and few-shot evaluation
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Features CV F1 (%) Zero-shot F1 (%) Few-shot F1 (%) (10%) Few-shot F1 (%) (20%) Few-shot F1 (%) (50%)
Au:H 57.4 56.6 58.5 61.4 65.2
Au:H,Utt 63.6 58.2 60.1 62.5 67.0
Au:H,Utt,Au:Sr 64.2 59.6 61.2 63.5 66.1
Au:H,Utt,Au:Sr,
ASR

64.7 60.4 62.2 64.3 65.2

Au:H,Utt,Au:Sr,
ASR,MD

64.8 62.5 63.7 65.0 66.4

Au:H,Utt,Au:Sr,
ASR,MD,Au:Tr

67.0 59.7 64.2 66.2 66.0

Table 3: Cross-Validation (CV) F1, Zero-shot and Few-shot F1 evaluation on the Spanish dataset.

AuH AuH,Utt AuH,Utt,AuSr AuH,Utt,AuSr,
ASR

AuH,Utt,AuSr,
ASR,MD

AuH,Utt,AuSr,
ASR,MD,AuTr

Features

58

60

62

64

66

F1
-S

co
re

 (%
)

F1-Score on Spanish

Cross-validation F1
Zero-shot F1
Few-shot F1 10%
Few-shot F1 20%
Few-shot F1 50%

Figure 1: F1-Score on Spanish language for various methods of training (cross-val on Spanish, Zero-shot, Few-shot for varying rates
of available Spanish Data). x-axis denotes the available features (added incrementally) for each trial.

experiments on the Spanish dataset. For the zero-shot evalua-
tion, we trained SVMs on the English dataset and evaluated on
the Spanish dataset. For the few-shot experiment, we partition
the Spanish dataset into equal-sized folds. We then incorporate
each fold in the training data along with English and evaluate
on the remaining folds. The reported performance is averaged
across the folds. To understand the impact of sample-efficiency,
we conducted few-shot evaluations using varying sizes of avail-
able Spanish data. The macro-averaged F1 score was used to
measure performance for all evaluations.

In Table 3, we present the results of our experiments. De-
spite the low performance achieved with cross-validation on the
Spanish dataset, which may be due to the limited number of
samples, our features demonstrated good cross-lingual general-
ization ability. The zero-shot evaluation showed only a small
drop in performance compared to the cross-validation perfor-
mance. When all features except Au:Tr are utilized, the F1 score
in the zero-shot scenario is only 4.5% lower than the F1 score
obtained through cross-validation. Additionally, incorporating
only 20% of the Spanish samples and all features results in a
decrease in F1 score by just 0.8%.

4. Conclusions
In this work, we present a cross-lingual approach for detect-
ing Alzheimer’s dementia from speech. Our approach is eval-

uated in diverse scenarios, where speech is both spontaneous
(for Greek, English) and scripted (for Spanish). We propose
extracting and fusing multiple feature streams that capture the
individual’s speech and conversational interactions. We evalu-
ate our proposed method in zero-shot and few-shot experimen-
tal scenarios, to validate its ability to perform well in cross-
linguistic setups. In the Greek dataset, our proposed set of fea-
tures achieves 78.3% zero-shot classification accuracy, leading
to an absolute increase of 4.4% when compared to the baseline
approach from the organizers of ADReSS-M challenge [21].
For Spanish, experimental results prove that the proposed fea-
tures lead to just a small drop of the performance in the zero
shot scenario despite the difference in the task (lack of speech
spontaneity). When only 20% of the target domain are used to
tune the models, the achieved performance is almost equivalent
to the cross validation performance in the target domain, which
proves the generalization ability of the features. In the future,
we plan to work on adding crosslingual semantics-related fea-
tures and further explore which features transfer across tasks
(spontaneous vs scripted). It would also be interesting to ex-
plore our proposed features on data from other languages.

5. References
[1] Z. Breijyeh and R. Karaman, “Comprehensive Review on

Alzheimer’s Disease: Causes and Treatment,” Molecules, vol. 25,

3011



no. 24, p. 5789, Dec. 2020.

[2] I. Arevalo-Rodriguez et al., “Mini-Mental State Examination
(MMSE) for the detection of Alzheimer’s disease and other de-
mentias in people with mild cognitive impairment (MCI),” The
Cochrane Database of Systematic Reviews, vol. 2015, no. 3, p.
CD010783, Mar. 2015.

[3] C. Carnero-Pardo, “Should the mini-mental state examination be
retired?” Neurologia (Barcelona, Spain), vol. 29, no. 8, pp. 473–
481, Oct. 2014.

[4] S. de la Fuente Garcia et al., “Artificial Intelligence, Speech, and
Language Processing Approaches to Monitoring Alzheimer’s Dis-
ease: A Systematic Review,” Journal of Alzheimer’s Disease,
vol. 78, no. 4, pp. 1547–1574, Dec. 2020.

[5] J. Becker et al., “The natural history of Alzheimer’s disease. De-
scription of study cohort and accuracy of diagnosis,” Archives of
Neurology, vol. 51, no. 6, pp. 585–594, Jun. 1994.

[6] S. Luz, F. Haider, S. de la Fuente, D. Fromm, and B. MacWhin-
ney, “Alzheimer’s Dementia Recognition Through Spontaneous
Speech: The ADReSS Challenge,” in Proc. Interspeech 2020,
2020, pp. 2172–2176.

[7] ——, “Detecting Cognitive Decline Using Speech Only: The
ADReSSo Challenge,” in Proc. Interspeech 2021, 2021, pp.
3780–3784.

[8] R. Pappagari et al., “Using state of the art speaker recognition and
natural language processing technologies to detect alzheimer’s
disease and assess its severity.” in INTERSPEECH, 2020, pp.
2177–2181.

[9] A. Meghanani, C. Anoop, and A. Ramakrishnan, “An exploration
of log-mel spectrogram and mfcc features for alzheimer’s demen-
tia recognition from spontaneous speech,” in 2021 IEEE Spoken
Language Technology Workshop (SLT). IEEE, 2021, pp. 670–
677.

[10] U. Sarawgi et al., “Multimodal Inductive Transfer Learning for
Detection of Alzheimer’s Dementia and its Severity,” in Proc. In-
terspeech 2020, 2020, pp. 2212–2216.

[11] N. Cummins et al., “A Comparison of Acoustic and Linguistics
Methodologies for Alzheimer’s Dementia Recognition,” in Proc.
Interspeech 2020, 2020, pp. 2182–2186.

[12] R. Haulcy and J. Glass, “Classifying alzheimer’s disease using
audio and text-based representations of speech,” Frontiers in Psy-
chology, vol. 11, p. 624137, 2021.

[13] Y. Pan et al., “Using the outputs of different automatic speech
recognition paradigms for acoustic-and bert-based alzheimer’s de-
mentia detection through spontaneous speech.” in Interspeech,
2021, pp. 3810–3814.

[14] A. Balagopalan et al., “To BERT or not to BERT: Comparing
Speech and Language-Based Approaches for Alzheimer’s Disease
Detection,” in Interspeech 2020. ISCA, Oct. 2020, pp. 2167–
2171.

[15] M. S. S. Syed et al., “Automated Screening for Alzheimer’s
Dementia Through Spontaneous Speech,” in Interspeech 2020.
ISCA, Oct. 2020, pp. 2222–2226.

[16] J. Yuan et al., “Disfluencies and Fine-Tuning Pre-Trained Lan-
guage Models for Detection of Alzheimer’s Disease,” in Inter-
speech 2020. ISCA, Oct. 2020, pp. 2162–2166.

[17] Y.-W. Chien, S.-Y. Hong, W.-T. Cheah, L.-H. Yao, Y.-L. Chang,
and L.-C. Fu, “An automatic assessment system for alzheimer’s
disease based on speech using feature sequence generator and re-
current neural network,” Scientific Reports, vol. 9, no. 1, pp. 1–10,
2019.

[18] C. Sanz et al., “Automated text-level semantic markers of
alzheimer’s disease,” Alzheimer’s & Dementia: Diagnosis, As-
sessment & Disease Monitoring, vol. 14, no. 1, p. e12276, 2022.

[19] G. Gosztolya et al., “Cross-lingual detection of mild cognitive im-
pairment based on temporal parameters of spontaneous speech,”
Computer Speech & Language, vol. 69, p. 101215, 2021.

[20] P. A. Pérez-Toro et al., “Alzheimer’s Detection from English to
Spanish Using Acoustic and Linguistic Embeddings,” in Proc. In-
terspeech 2022, 2022, pp. 2483–2487.

[21] S. Luz et al., “Multilingual alzheimer’s dementia recognition
through spontaneous speech: a signal processing grand
challenge,” 2023. [Online]. Available: https://arxiv.org/abs/2301.
05562

[22] O. Ivanova et al., “Discriminating speech traits of alzheimer’s dis-
ease assessed through a corpus of reading task for spanish lan-
guage,” Computer Speech & Language, vol. 73, p. 101341, 2022.

[23] H. Bredin et al., “pyannote.audio: neural building blocks for
speaker diarization,” in ICASSP 2020, 2020.

[24] T. Giannakopoulos, “pyaudioanalysis: An open-source python li-
brary for audio signal analysis,” PloS one, vol. 10, no. 12, p.
e0144610, 2015.

[25] J. Shor and S. Venugopalan, “TRILLsson: Distilled Universal Par-
alinguistic Speech Representations,” in Proc. Interspeech 2022,
2022, pp. 356–360.

[26] Y. Gong et al., “AST: Audio Spectrogram Transformer,” in Proc.
Interspeech 2021, 2021, pp. 571–575.

[27] A. Radford et al., “Robust speech recognition via large-scale weak
supervision,” arXiv preprint arXiv:2212.04356, 2022.

[28] M. Honnibal et al., “spaCy: Industrial-strength Natural Language
Processing in Python,” 2020.

[29] F. Eyben et al., “The geneva minimalistic acoustic parameter
set (gemaps) for voice research and affective computing,” IEEE
transactions on affective computing, vol. 7, no. 2, pp. 190–202,
2015.

3012


