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Abstract

End-to-end speech summarization (E2E SSum) directly sum-

marizes input speech into easy-to-read short sentences with a

single model. This approach is promising because it, in contrast

to the conventional cascade approach, can utilize full acousti-

cal information and mitigate to the propagation of transcription

errors. However, due to the high cost of collecting speech-

summary pairs, an E2E SSum model tends to suffer from train-

ing data scarcity and output unnatural sentences. To overcome

this drawback, we propose for the first time to integrate a pre-

trained language model (LM), which is highly capable of gen-

erating natural sentences, into the E2E SSum decoder via trans-

fer learning. In addition, to reduce the gap between the inde-

pendently pre-trained encoder and decoder, we also propose to

transfer the baseline E2E SSum encoder instead of the com-

monly used automatic speech recognition encoder. Experimen-

tal results show that the proposed model outperforms baseline

and data augmented models.

Index Terms: end-to-end speech summarization, transfer learn-

ing, pre-trained language model

1. Introduction

Speech summarization (SSum) technology is attracting increas-

ing attention [1–3] because its written style and short summaries

are more user-friendly compared with word-by-word transcrip-

tions. A typical way of realizing SSum is the cascade approach,

where a text summarization (TSum) model summarizes input

text transcribed by an automatic speech recognition (ASR) sys-

tem. The cascade approach is successful thanks to a highly-

accurate ASR model [4] and a TSum model pre-trained with a

large amount of unpaired text data [5]. However, this approach

suffers from ASR error propagation [6] and a lack of acousti-

cal information that conveys the speaker’s attitude and emotion

[7]. To alleviate these limitations, we can exploit N-best ASR

hypotheses to mitigate the effect of ASR errors [8], and add

acoustic features to the input text [9].

As an alternative and more straight-forward approach,

endto-end (E2E) SSumwas proposed more recently. E2E SSum

directly generates abstractive summaries from speech with a

single model. Hence, it does not depend on erroneous tran-

scriptions and can make full use of acoustical information. [10]

implements an E2E SSum model with restricted self-attention

to deal with long speech input and reported that it outperforms

the cascade model on the How2 dataset [11], which is often used

for SSum experiments. In spite of the promising results, an E2E

SSum model requires a large amount of costly speech-summary

pairs for training, and tends to suffer from data scarcity and gen-

erate unnatural sentences. In [12], the authors tackle with this

problem by using a text-to-speech (TTS)-based data augmenta-
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Figure 1: Our proposed method consists of three stages: pre-

training, fine-tuning, and transfer learning. Arrows indicate

which model is used for initialization. DASR, DTSum, DSSum

denote training data for ASR, TSum, and SSum, respectively.

tion approach [13,14]. They converted an external TSum corpus

into additional speech-summary pairs by the TTS technology

and achieved a better performance than their baseline systems.

However, the amount of training data may still not be enough

for the E2E SSum model to generate natural sentences.

Recently, large pre-trained language models (LMs) have

been publicly and readily available [5, 15]. These models can

be trained on an extremely large text corpus and have strong

LM capabilities that allow them to generate very natural text.

Encouraged by this, we propose for the first time to integrate

a large pre-trained LM into an E2E SSum model via transfer

learning. The procedure is depicted in Figure 1. First, we

pre-train an ASR model and prepare a publicly available large

pre-trained LM1, both of which have an encoder-decoder ar-

chitecture [16]. Second, we fine-tune these models to obtain

E2E SSum and TSum models. Finally, we transfer the SSum

encoder and TSum decoder into a single model, which is fur-

ther trained with a target SSum dataset (i.e., transfer learning)

without freezing any parameters. Our proposed method for E2E

SSum has two major differences from the typical transfer learn-

ing approach for other E2E speech processing tasks (e.g., E2E

speech translation [17–21]):

1. For the decoder initialization, we leverage a strong TSum

model fine-tuned from a large pre-trained LM. Since the out-

put sentences should be in written style and sophisticated in

the SSum task, the capability of a pre-trained LM to generate

natural sentences is expectedly essential.

1We do not leverage self-supervised speech models for the encoder
because the How2 dataset, which we used in the experiment, has only
extracted acoustic features and does not contain raw waveforms. Thus,
we apply ASR pre-training instead of speech self-supervised learning
in this work.
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Figure 2: Two variants of our proposed model: (a) ASR initialized model and (b) LM initialized model.

2. For the encoder initialization, we transfer the baseline E2E

SSum encoder instead of the commonly used ASR encoder.

We assume that the encoder should be fine-tuned on a task

similar to TSum in advance and more powerful to effectively

collaborate with the strong TSum decoder.

To evaluate the proposed method, we conducted several ex-

periments on the How2 dataset. The proposed method signif-

icantly improved METEOR scores by 1.4 and 1.2 points com-

pared with the baseline model and TTS-based data augmenta-

tion method, respectively. In addition, our proposed model gen-

erated more natural summaries than other E2E SSum models as

we expected. We further reveal that we can choose to reduce the

training cost by omitting TSum fine-tuning with a slight perfor-

mance degradation.

2. Related Work

The transfer learning approach is widely studied for the E2E

speech translation task, where a single model directly translates

speech utterances into transcriptions in a target language [22].

For instance, [17] reports that a Long Short-Term Memory-

based speech translation model gains a large improvement when

it is initialized with the ASR encoder and machine translation

decoder. Some studies re-think the speech translation model

architecture to avoid wasting unused subnets such as the ASR

decoder and the machine translation encoder [18,19]. [20] lever-

ages an unsupervisedly pre-trained speech encoder (wav2vec

2.0 [23]) and a text decoder (mBART [24]) and achieves state-

of-the-art speech translation performance. Inspired by these

successes, we propose to apply the transfer learning approach

to E2E SSum, which to the best of our knowledge has not been

attempted before.

In [21], they point out that ASR pre-training is not enough

for speech translation tasks, and they additionally pre-train the

encoder with two tasks: frame-based masked LM and lexicon

translation. Motivated by this study, we also propose to transfer

an SSum encoder, which is expectedly stronger than an ASR

encoder.

3. Method

3.1. End-to-End Speech Summarization (E2E SSum)

In this paper, we adopt the Transformer-based encoder-decoder

model to implement an E2E SSum model. The encoder Enc(·)
receives a sequence of acoustic features x1:T and outputs a sub-

sampled sequence of hidden representations hEnc
1:[T

r
]
with a sub-

sampling rate of r:

h
Enc
1:[T

r
] = Enc(x,R; θenc), (1)

where θenc is the parameters of the encoder. We use sub-

sampling convolutional neural networks (CNNs) followed by

Conformer blocks [25] as Enc(·). R denotes relative positional

embeddings.

The decoderDec(·) receives hEnc
1:[T

r
]
and previous output to-

kens ŷ1:l−1 to estimate the l-th token ŷl:

h
Dec
l = Dec([Emb(ŷi) + LPE(i)]

l−1
i=0,h

Enc
1:[T

r
]; θdec), (2)

ŷ
dist
l = softmax(hDecl ), (3)

ŷl = argmax
yl

(ŷdistl ), (4)

where Dec(·) is composed of Transformer blocks with source-

target attention, and θdec is the parameters of the decoder. The

token embedding layer Emb(·) and the learnable position em-

bedding layer LPE(·) embed a token and its position, respec-

tively. At the beginning of the inference, the decoder receives a

special start-of-sentence token <sos>. It outputs tokens until a

special end-of-sentence token <eos> is emitted.

In the training stage, the parameters θenc and θdec are opti-

mized by the stochastic gradient descent algorithm to minimize

cross-entropy loss:

L = −
1

L

L∑

l

K∑

k

y
LS
l,k log ŷ

dist
l,k , (5)

where L and K denote the number of tokens in a target sum-

mary and the vocabulary size, respectively. yLSl,k denotes the

k-th element of the one-hot encoding of yl with label smooth-

ing regularization [26]. ŷdistl,k denotes the k-th element of ŷdistl .

Teacher forcing is used to stabilize model training, where the

ground truth token yi is used in formula (2) instead of estimated

ŷi.

3.2. TTS-based Training Data Augmentation

One straight-forward approach to address the training data

scarcity problem is TTS-based data augmentation [12]. We

experiment with this approach as another baseline. First, we

synthesize raw waveforms from source text of an external text

summarization dataset using a TTS model. Then, we extract

acoustic features from the waveforms and obtain pairs of the

synthesized-speech and corresponding summaries. Finally, we

fine-tune the baseline SSum model with both real and synthe-

sized data. As a drawback, this method can leverage only exter-

nal TSum datasets, not unpaired text nor large pre-trained LMs.

Furthermore, the speech synthesis incurs extra computational

costs.
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Table 1: Results of baseline models (C-1, B-1, and B-2) and our proposed models (P-1, P-2, and P-3). We also note initialization

parameters, e.g., proposed model (P-1) was initialized with SSum encoder and TSum decoder.

ID Model
Initialization

ROUGE-1, 2, L (↑) METEOR (↑) BERTScore (↑)
Encoder Decoder

C-1 cascade (ASR+TSum) - 61.1, 43.3, 55.7 30.5 92.88
B-1 baseline (SSum) ASR 64.9, 49.6, 60.8 33.0 93.55
B-2 data augmented SSum 65.3, 50.7, 61.3 33.2 93.62

P-1 proposed SSum (B-1) TSum 67.0, 52.1, 63.2 34.4 93.98
P-2 ASR initialized ASR TSum 64.0, 48.4, 59.9 32.5 93.49
P-3 LM initialized SSum (B-1) LM 67.0, 52.3, 63.2 34.2 93.85

3.3. Transfer Learning for E2E SSum

Our proposed method uses three datasets: speech-transcription

pairs DASR for ASR, speech-summary pairs DSSum for SSum,

and transcription-summary pairs DTSum for TSum.

As depicted in Figure 1, the procedure of our proposed

method consists of the following three stages:

1. First, we obtain pre-trained ASR and LMs as follows,

• A randomly initialized encoder-decoder model is trained

with DASR to obtain an ASR model.

• Instead of pre-training a large LM by ourselves, we lever-

age publicly available models. In this paper, we adopt the

BART base model2 [5].

2. Second, we fine-tune the pre-trained models to obtain the

SSum and TSum models as follows,

• The ASR model is fine-tuned with DSSum to obtain an

SSum model. This is the baseline E2E SSum model.

• The LM is fine-tuned with DTSum to obtain a TSum

model.

3. Finally, we transfer the SSum encoder and the TSum decoder

into an encoder-decoder model. Then, it is fine-tuned with

DSSum to obtain the proposed model.

The proposed model expectedly inherits the strong capabil-

ity to encode speech from the SSum encoder and to generate

summary sentences from the TSum decoder on the basis of a

large pre-trained LM. In addition, this method does not require

additional costs to synthesize and store the augmented data.

In addition to the proposed model, we additionally examine

two variants: the ASR initialized model and the LM initialized

model. The ASR initialized model is initialized with the ASR

encoder instead of the SSum encoder in the transfer learning

stage as illustrated in Figure 2-(a). We can examine whether the

SSum fine-tuning is necessary for our proposed method with

this model. The LM initialized model is initialized with the LM

decoder instead of the TSum decoder as illustrated in Figure 2-

(b). We expect that the LM model is already capable enough to

generate target summaries, and we can further save the compu-

tational cost required to train the TSum model.

4. Experiments

4.1. Datasets

In all experiments, we used the How2 dataset [11], which is

composed of short instructional speech and corresponding tran-

scriptions and summaries. The dataDASR,DSSum, andDTSum

in Section 3.3 were the speech-transcription, speech-summary,

and transcription-summary pairs of this dataset, respectively.

2https://huggingface.co/facebook/bart-base

The training, validation, and evaluation sets contained 68,336,

1,600, and 2,127 samples (i.e., triplets of speech, transcription,

and summary), respectively. The input speech was truncated

up to 100 seconds and composed of 40-dimensional log Mel-

filterbank energies with 3-dimensional pitch features. The total

input speech length was 1,700 hours, and the average length was

84.9 seconds. We also examined whether our proposed method

works in several lower resource settings. We randomly sub-

sampled 100-, 500-, and 1,000-hour subsets of the training set,

which contained 4,243, 21,311, and 42,549 samples, respec-

tively. We used these subsets in the fine-tuning and transfer

learning stages. In the ASR pre-training stage, the full dataset

was used because speech-transcription pairs are generally easy

to collect. For the data augmentation explained in Section 3.2,

we used the Gigaword corpus [27, 28], which is composed of

3.8M pairs of first sentences and titles of news articles. The TTS

model synthesized 12,000 hours of speech from this dataset.

4.2. Training and Evaluation

We adopted two encoder-decoder models in these experiments.

For the ASR and E2E SSum models, the encoder was composed

of 4-layer CNNs with a sub-sampling rate of 4 and 12-layer

Conformer blocks with a model dimension of 768. The Con-

former blocks had 8 attention heads, 2048-dimensional feed-

forward (FF) layers, and a kernel size of 31. The batch nor-

malization layers in the convolution modules were replaced by

layer normalization to stably deal with small batch sizes. For

the TSum model, the encoder was composed of 6-layer Trans-

former blocks with 12 attention heads and 3072-dimensional FF

layers. The decoder structure was completely common for both

E2E SSum and TSum. It was composed of 6-layer Transformer

blocks with 12 attention heads and 3072-dimensional FF lay-

ers. The SSum (ASR) and TSum models have 280M and 140M

parameters, respectively.

In all the stages in Section 3.3, we used the Adam opti-

mizer [29]. In the ASR pre-training stage, we used the Xavier

initialization [30] and Noam scheduler [16] with a maximum

learning rate of 2x10−3, 40,000 warm-up steps, a weight decay

rate of 10−6, and a batch size of 512. The word error rate of

the ASR model was 9.8% with a beam size of 16 on the evalu-

ation set. In the SSum fine-tuning and transfer learning stages,

we halved the learning rate starting at 1x10−4 if the validation

loss was not improved. The batch size was 30. We applied

SpecAugment [31] to input features in these three stages. In

the TSum fine-tuning stage, we linearly decayed the learning

rate starting at 5x10−5 for 20 epochs with a batch size of 8.

We adopted the vocabulary of the public BART model intro-

duced in Section 3.3 (i.e., Byte-Pair Encoding [32] with a size of

50,265) in all experiments for consistency between pre-training

and fine-tuning.

For the data augmentation in Section 3.2, we followed the

2945



Table 2: Summaries and METEOR scores obtained by Model B-1, B-2, and P-1 for sample “vNG AOtftEc” in evaluation set. Model

B-1 and B-2 generated awkward expressions as highlighted in bold, while Model P-1 generated more natural summary.

ID METEOR Summary

Ref. -
When buying a computer, consider what the computer will be used for and modify the computer to fit specific needs. Get more memory for

graphic art and a faster processor for gaming on a computer with information from a computer and technology specialist in this free video

on computers.

B-1 20.1
Buying a computer is a complicated process, but sometimes it’s a complicated process, such as writing letters, surfing, internet, checking

email and spread sheets. Purchase a computer with tips from a computer and technology specialist in this free video on computers.

B-2 22.0
When buying a computer, it’s important to use a computer for basic every day office tasks like writing letters, surfing the internet, surfing

the internet, surfing or even mass. Find out how to buy a computer and how much space to put on a computer with information from a

computer and technology specialist in this free video on computers.

P-1 26.8
When buying a computer, make sure to have a computer with a graphics card, a quality hard drive and lots of storage space for all the

equipment and supplies a computer has. Buy a computer with a demonstration from a computer and technology specialist in this free video

on computers.

setting described in [12] except for the vocabulary. We used

VITS [33] trained with the LJSpeech dataset [34] for the TTS

model. During fine-tuning, the learning rates started at 1x10−4

and 1x10−3 on the encoder and decoder, respectively. The max-

imum total length of input sequences in one batch was set to

300k. Each batch contained only real or artificial samples. The

other optimization settings were the same as in the above SSum

fine-tuning stage. We also implemented the cascade model as

another conventional baseline. The ASR and TSum models

were identical to those above mentioned.

For evaluation, we used the checkpoint that achieved the

best validation accuracies. The beam width was 8, the length

penalty was 0.3, and early end detection [35] was applied.

We chose ROUGE [36], METEOR [37], and BERTScore [38]

scores for the objective metrics, which are commonly used in

TSum studies. We used ESPnet2 [39] for all of the implemen-

tation, training, and evaluation.

4.3. Results

In Table 1, we show the ROUGE, METEOR, and BERTScore

scores of the baseline models (C-1, B-1, and B-2) and proposed

models (P-1, P-2, and P-3) on the How2 evaluation set. All the

E2E models outperformed the cascade model (C-1). This result

implies that it is important for SSum to leverage nonverbal in-

formation and to not depend on erroneous transcriptions. The

augmented data model (B-2) improved the summarization ac-

curacies even though the domain of the Gigaword dataset was

fairly different from the target How2 dataset as reported in [12].

Our main proposed model (P-1) further improved the

ROUGE-L, METEOR, and BERTScore scores by 2.4, 1.4, and

0.33 points from the E2E baseline model (B-1), resulting in

the best performance in our experimental setting. When the

ASR encoder was used for the initialization, the performance

of our proposed method did not improve as seen in the results

of the ASR initialized model (P-2), unlike the previous studies

in the speech translation field [17]. This result indicates that

pre-training the encoder with the difficult SSum task was es-

sential, and the ASR pre-training was not enough, unlike the

previous studies in Section 2. In contrast, the results of the LM

initialized model (P-3) show that our method worked well with-

out the TSum fine-tuning stage. Additionally, both Model P-1

and P-3 required almost the same number of fine-tuning steps to

converge in the transfer learning stage. Hence, we can reduce

the training time with a small degradation of performance by

using the pre-trained LM (i.e., BART) decoder directly.

Figure 3: METEOR scores obtained by Model P-1, B-1, and

B-2 with various amounts of training data.

We show examples of summaries and their METEOR

scores obtained by Model B-1, B-2, and P-1 in Table 2. Model

B-1 and B-2 output awkward sentences as highlighted in bold,

but Model P-1 generated more natural sentences. This result

suggests that the E2E SSum model should be trained with a

larger amount of text than the external TSum dataset, while

transferring the pre-trained LM was effective to improve the

quality of summaries.

Finally, we show the METEOR scores obtained by Model

P-1, B-1, and B-2 with various amounts of training data in Fig-

ure 3. The proposed model P-1 performed best with training

data of 500 hours (21k samples) or more. When the amount

of training data was only 100 hours (4.2k samples), the perfor-

mance of the proposed model did not improve probably because

it was difficult to integrate two independently pre-trained mod-

ules with the very small amount of training data.

5. Conclusion

In this paper, we proposed to leverage a large pre-trained LM for

E2E SSum via transfer learning. The proposed model achieved

the best performance and generated the most natural sentences

in our experiments. We found that it was essential to transfer

the E2E SSum encoder instead of the ASR encoder. The results

also showed that we can save on training time with little perfor-

mance degradation when skipping the TSum fine-tuning stage.

In addition, the proposed models achieved the highest perfor-

mance with training data of 500 hours or more. Future research

includes collecting a new speech summarization dataset with

raw waveforms to examine the effect of integrating speech pre-

trained models for the encoder.
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