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Abstract
This study aimed to detect social signals, such as laughter and
screams, in real environments. Social signals influence human-
to-human communication. To effectively apply these signals in
various systems, computer systems must appropriately detect
social signals. In this study, social signal detection (SSD) ex-
periments were conducted to demonstrate which of three feature
sets, i.e., a spectral feature set, prosodic feature set, and spec-
tral and prosodic feature set, was best for detecting laughter and
screaming. The results showed that using both the spectral and
prosodic feature sets yielded the best performance, with 81.83%
accuracy for laughter and 81.68% accuracy for screams. More-
over, the detection model comparison results revealed that the
bidirectional long short-term memory (BiLSTM)-connectionist
temporal classification (CTC) yielded the best laughter detec-
tion performance, while attention-CTC was best for scream de-
tection. These results suggest that CTC is effective for SSD.
Index Terms: laughter, screams, attention, CTC, detection ex-
periment

1. Introduction
Social signals [1, 2, 3] are attitudes and postures that repre-
sent mental states that occur during human-to-human interac-
tions. One of the communication modalities for producing so-
cial signals is the use of vocal expressions, such as laughter
and screaming, which indirectly convey the speaker’s emotional
state to listeners. While laughter can indirectly represent posi-
tive emotions such as happiness and enjoyment, it can also ex-
press negative emotions such as fake smiles in social situations
[4], taunting laughter, or schadenfreude [5, 6]. Screams can be
positive screams representing extreme excitement or negative
screams indicating fear or a need for help [7, 8]. The influence
of laughter and screaming on human-to-human interactions is
very powerful. Therefore, computer systems should be able to
detect a speaker’s laughter and screams to judge their emotional
state, which can improve the performance of human-to-machine
interactions by generating appropriate responses to the speaker.

Several studies have been conducted on the automatic de-
tection of laughter and screams [9, 10, 11, 12, 13, 14, 15, 16,
17]. These studies aimed to detect and discriminate laugh-
ter from filler sounds and speech and screams from noise and
speech, targeting the detection of sound events that occur in
the same environment. Although laughter and screaming tend
to have similar acoustic properties, such as higher fundamen-
tal frequency (fo) values than typical speech [18, 19, 20],
no study has investigated the detection of both laughter and
screaming. The present study focused on laughter and screams
due to their remarkable acoustical characteristics representing
stronger emotional states in public environments such as amuse-

ment parks and sports stadiums, where people are excited dur-
ing communication. Accurately detecting these two acousti-
cally similar but emotionally different vocal phenomena is a
high-priority and critical task in social signal detection (SSD).
A previous study [21] that focused on discriminating between
laughter and scream segments yielded high discrimination ac-
curacies of 93.52% for the deep neural network (DNN) model
and 95.54% for the support vector machine (SVM) model using
6,373 acoustic features. However, their experiments included
only three classification categories for the given segmented vo-
cal events including laughter and screams as opposed to the de-
tection of laughter and screams occurring in time-series speech
data; thus, a study on the detection of laughter and scream is
needed for applications in real-world environments.

For SSD, it is necessary to train an end-to-end model that
directly infers social signals on an event-by-event basis rather
than on a frame-by-frame basis, considering its application to
real-world environments [12]. In automatic speech recognition
(ASR), the connectionist temporal classification (CTC) model
[22] and attention model [23, 24] have been proposed as end-to-
end models, achieving highly accurate results. In SSD, laughter
and filler sounds were used in the bidirectional long short-term
memory (BiLSTM)-CTC model to achieve a detection accuracy
that exceeded that of the DNN-hidden Markov model (HMM),
indicating that the CTC model can determine the location of
social signals in time-series data [12]. In addition, a scream de-
tection system consisting of an autoencoder module and a clas-
sifier module using an attention mechanism was constructed,
achieving a detection accuracy of 71.05% [17]. However, it is
not clear how effective the attention mechanism and CTC model
are for detecting laughter and screaming. The development of
an effective end-to-end model for SSD would be helpful in the
construction of complex models for SSD and ASR.

In this study, three different end-to-end models, the CTC
model, attention model, and attention-CTC model, are con-
structed to directly detect spontaneous laughter and screams.
The models are trained with three acoustic feature sets as input
and evaluated using three spontaneous dialogue speech corpora.
By performing SSD using the framework of ASR, it is expected
to improve the performance of both ASR and SSD. The present
study focused on the detection and interrelationships of laughter
and screaming, thus, speech recognition was not performed.

This is the first step towards a universal social signal de-
tection study encompassing laughter, screams, sighs, fillers,
coughs, cries, and more. The main contributions of this paper
can be summarized as follows.
• The effectiveness of acoustic features for four-class detec-

tion, including laughter and screams, was elucidated.
• The competence and robustness of end-to-end models for

SSD was verified through comparisons with three models.
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2. Speech materials
2.1. Corpora

In these detection experiments, the Action Game Spoken Com-
munication Corpus (AGSC) [7] was used as training data for
the model. In the AGSC, the dialogue speech of 24 partici-
pants (12 males and 12 females) was recorded for an average of
60.7 minutes for each speaker. In the collection of the AGSC,
unconscious laughter and screams were induced by having the
participants, who were grouped in pairs, play action-oriented
games against each other in a soundproof room.

The Online Gaming Voice Chat Corpus with Emotional La-
bels (OGVC) [25] was used for evaluation experiments. The
OGVC is a publicly available spontaneous dialogue corpus that
includes dialogue speech from 13 speakers (9 males and 4 fe-
males). The participants cooperatively played an online game
in pairs or groups of three, conversing through voice chat, and
an average of one hour of audio was recorded for each partic-
ipant. In this detection experiment, the dialogue speech of 7
participants (5 males and 2 females) with laughter and scream-
ing labels was used.

The multimodal corpus of spontaneous affective interaction
during gameplay (MSAI) [26], which contains more screaming
sounds than the OGVC, was used as the test data for the eval-
uation experiments. The MSAI was recorded with the aim of
examining whether game events can be presented in response
to spontaneous laughter to encourage cognitive and emotional
attraction by having the participants played the game. There
were 58 participants played the game for 30 minutes twice. For
the convenience of the game experiment, the participants were
placed next to each other to play the game, so some speech
of different speakers was recorded. The dialogue speech of 12
participants was used in this detection experiment as evaluation
data.

2.2. Definition of acoustic events

In this study, laughter is defined as a series of laughter (laughter
episode) composed of exhalations (bouts) and inhalations [27,
28]. A laughter episode consists of bouts and inhalations with
laughter. Although the spontaneous dialogue speech corpora
contain speech laughs, i.e., laughing speech, they are defined
as speech in this study, not as laughter episodes. Each corpus
includes 2,376 (1.43s/segment, AGSC), 1,208 (0.70s/segment,
OGVC), and 720 (1.30s/segment, MSAI) laughter segments.

Moreover, screaming is defined as an emotionally ex-
pressed interjection that is unconsciously uttered by the speaker
due to an unexpected event that has a unique prosody or voice
quality. In some of the recordings, speech and screaming cooc-
cur; however, this is not defined as screaming in this study
and is instead defined as speech. The definition of screaming
varies between studies, including sustained loud voices [8, 14]
and spontaneously produced prosodic-specific vocal events [7].
Since the acoustic properties of acted speech and spontaneous
speech differ [25], screaming was defined on the basis of [7].
Furthermore, the context and situation should be considered to
determine whether the signal is screaming or not. Since the
definition in previous studies did not include that detail, it was
added to the definition in our study. Each corpus includes 1,320
(0.57s/segment, AGSC), 85 (0.45s/segment, OGVC), and 284
(0.46s/segment, MSAI) scream segments.

Speech is defined as an interpausal unit based on 400 ms
signal segments. Speech segments that did not include laugh-
ter, screams, or silence within 400 ms (pause) were excluded.

Each corpus includes 19,867 (0.95s/segment, AGSC), 5,696
(0.88s/segment, OGVC), and 10,461 (0.91s/segment, MSAI)
speech segments and 7,781 (0.15s/segment, AGSC), 1,106
(0.18s/segment, OGVC), and 1,313 (0.33s/segment, MSAI)
pause segments. In this study, the single sequences in our ex-
periments were less than 10 seconds, and laughter, screaming,
speech, and pauses were labelled in segments in each sequence
for each corpus. After a label was assigned, the event was
treated as a single event, regardless of the duration of the utter-
ance, until another defined event occurred. The inter-rator reli-
ability scores among annotators and other details are described
in [28, 29, 30].

3. Acoustic feature set comparison
3.1. Acoustic feature sets

The detection experiments were performed to evaluate the ac-
curacy of detecting laughter and screaming with three corpora:
a spectral feature set, a prosodic feature set, and a feature set
using both spectral and prosodic features. The results clarify
which feature sets are most effective for SSD.

The acoustic features included log-mel filter bank features
(FBANK) for spectral information and a created ComParE fea-
ture set [31] for prosodic information, which were extracted for
25 ms frames with a frame shift of 10 ms. The FBANK fea-
tures have been used in previous ASR and SSD studies [11].
This feature set consists of a 40-channel log-mel filter bank, as
well as the delta and acceleration coefficients, for a total of 120
dimensions. The ComParE feature set was provided by openS-
MILE [32] from the Interspeech 2013 ComParE Challenge [31].
This feature set consists of 33-dimensional features, including
the log energy (+ the delta and acceleration coefficients), voice
probability, fo, zero crossing rate (ZCR), and the harmonics-
to-noise ratio (HNR) (+ the delta coefficient), for a total of 11
features, as well as the mean in the frame neighbourhood and
the standard deviation. The ComParE features have previously
been used in SSD experiments and are detected with high ac-
curacy [11, 13]. The MFCCs are excluded from this feature set
because the MFCCs were less accurate than the FBANK fea-
tures for detecting social signals according to [11]. The third
feature set consists of the aforementioned FBANK feature set
and the ComParE feature set (FBANK+ComParE) for a total of
153 dimensions.

3.2. Experimental setup

The AGSC data were used as the training, validation and test
data. To balance the amount of data for the four classes of
acoustic events, the number of laughter segments was adjusted
to match the number of scream segments, namely, 1320 data
points. However, since the number of speech and pause seg-
ments was very large, the number of labelled speech and pause
segments was minimized based on the number of single se-
quences of vocal events containing social signals. The created
AGSC dataset was randomly divided into training, validation
and test sets at a ratio of 7:2:3, resulting in a total of 1,232, 352,
and 528 audio sequences in each set. Since a previous study on
ASR [33, 34] successfully improved model accuracy through
data augmentation methods, our original data were augmented
with the following five methods, increasing the amount of train-
ing data sixfold to 7,392 sequences: (a) white noise superim-
posed at 20 dB, (b) time stretching to increase the duration by
a factor of 1.1, (c) time stretching to decrease the duration by a
factor of 0.9, (d) pitch shift to increase the pitch by a factor of
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Figure 1: The architectures of CTC, attention, and attention-CTC models in this experiments.

1.1, and (e) pitch shift to decrease the pitch by a factor of 0.9.
The numbers of sequences of OGVC and MSAI test data were
also adjusted based on the amount of AGSC test data, namely,
528 sequences. The OGVC and MSAI test data were adjusted
based on the number of sequences in the AGSC test data, but
the class balance in each corpus was maintained.

The model used in this detection experiment is the
BiLSTM-CTC model, which was also used in [12]. Figure 1
shows the architecture of CTC model. The network consists of
320 or 512 nodes with 4 or 5 connected layers (BiLSTM and
linear); in addition, another linear layer and the softmax func-
tion were added at the end of the model to calculate the CTC
loss function. The optimization function is Adadelta, the batch
size is 10 audio sequences, and the learning rate is 1.0. To im-
prove the learning efficiency, early stopping was used, where
the learning rate was halved if the error value of the valida-
tion data did not improve, and training was stopped if the error
value did not improve during three consecutive epochs. The
maximum number of training epochs was 60. For fast process-
ing, two subsampling layers were used to reduce the number of
frames by half after the second and third connected layers.

The F-measure was used as an evaluation metric to assess
the accuracy of detecting laughter and screaming [35]. For
each condition, two parameter combinations (320 nodes with 4
connected layers and 512 nodes with 5 connected layers) were
trained three times each, for a total of six results, and the aver-
age F-measure was calculated.

3.3. Results and discussion

Table 1 shows the results of the laughter, scream, and speech
feature sets for each corpus. In the corpus-closed evaluation
experiment using the AGSC, laughter was detected with an ac-
curacy of 81.83% and screaming was detected with an accuracy
of 81.68% using the FBANK+ComParE feature set. Laughter
and screaming were detected with an F-measure of approxi-
mately 80%, indicating that laughter and screaming can be dis-
tinguished. In the corpus-open evaluation experiment using the
OGVC and MSAI, laughter was detected with accuracies of
79.38% (OGVC) and 78.63% (MSAI), and screaming was de-
tected with accuracies of 58.89% (OGVC) and 71.63% (MSAI),
with the best results achieved with the FBANK+ComParE fea-
ture set. Laughter and screaming were detected over 70% in the
two-speaker mixed vocal audio samples in the MSAI dataset in-
dicates the robustness of the model in real-world environments.

Comparing the F-measures of laughter and screams for all
feature sets, the FBANK+ComParE feature set was superior to
the other feature sets. This result indicates that spectral and
prosodic features are essential for SSD. Although the ComParE
feature set has only 33 dimensions, it shows a difference in F-
measure of ±1.84–6.29% from the FBANK feature set, which

Table 1: Results of acoustic feature set comparison among
different corpora for detection F-measures [%] of laughter,
screaming, and speech.

Event Feature set AGSC OGVC MSAI

Laughter
FBANK 80.19 71.31 76.29
ComParE 77.31 74.01 70.00
FBANK+ComParE 81.83 79.38 78.63

Screaming
FBANK 80.84 52.52 64.18
ComParE 78.57 50.68 68.47
FBANK+ComParE 81.68 58.89 71.63

Speech
FBANK 78.46 72.35 64.69
ComParE 74.83 63.36 63.41
FBANK+ComParE 78.96 71.06 69.40

is nearly equivalent. This result suggests that sudden prosodic
changes that are unique to affect bursts can be distinguished
from speech. Thus, prosodic features may be essential for SSD.

4. Detection model comparison
4.1. End-to-end models

In these detection experiments, the FBANK+ComParE feature
set was applied to three end-to-end models, and the detec-
tion accuracy of laughter and screaming was evaluated based
on three corpora. Then, an effective model for SSD was
developed. The following three types of end-to-end models
were tested: the CTC (baseline) model, attention model, and
attention-CTC model. Figure 1 shows the architecture of atten-
tion and attention-CTC models.

The attention model [23, 24] is an encoder-decoder model
that extracts latent representations by focusing on input features
that are important according to the token output. In this work,
the attention model consists of 320 or 512 nodes with 4 or 5
connected BiLSTM and linear layers in the encoder. Then, the
attention weights are computed based on the output of the en-
coder. In the decoder, an LSTM network is established using
the attention weights, the estimated previous output, and prior
information as inputs. Then, the social signal is output through
a linear layer. The loss function is a cross-entropy function.
Teacher forcing is conducted to ensure stable learning.

The attention-CTC model is an attention model that adds
the CTC loss function to the cross-entropy loss function used by
the attention model [36]. This suppresses unnatural alignment
estimation caused by the attention mechanism and improves the
ASR accuracy by stabilizing attention learning. In the attention-
CTC model used in this experiment, the encoder and decoder
used the same network as in the attention model. In addition,
the CTC loss value is calculated based on the encoder output in
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Table 2: Results of end-to-end model comparison among differ-
ent corpora for detection F-measures [%] of laughter, scream-
ing, and speech.

Event Model AGSC OGVC MSAI

Laughter
CTC (baseline) 81.83 79.38 78.63
Attention 80.71 79.75 76.59
Attention-CTC 81.40 80.54 76.90

Screaming
CTC (baseline) 81.68 58.89 71.63
Attention 82.92 53.75 69.95
Attention-CTC 83.12 61.68 73.00

Speech
CTC (baseline) 78.96 71.06 69.40
Attention 73.42 64.62 62.06
Attention-CTC 76.66 69.30 69.86

addition to the cross-entropy error, and the weight of the CTC
loss function is set to 0.2.

Other parameter values, optimization functions, and meth-
ods for early stopping and subsampling are the same as those
used in Section 3.

4.2. Experiments setup

Our detection experiments use only the FBANK+ComParE fea-
ture set. The details of the dataset and the CTC model are the
same as those in Section 3. The evaluation metrics used in this
experiment are the F-measure [35].

4.3. Results and discussion

Table 2 shows the detection results of the three end-to-end
models based on the F-measures of laughter, screaming, and
speech. For laughter, the CTC model was the most accurate
based on the AGSC (81.83%) and MSAI (78.63%) datasets,
while the attention-CTC model was the most accurate based
on the OGVC (80.54%) dataset. For screaming, the attention-
CTC model was the most accurate based on all corpora, with
accuracies of 83.12% (AGSC), 61.68% (OGVC), and 73.00%
(MSAI). The models with the best performance (CTC and
attention-CTC) were both constructed with CTC. Thus, the
models that include CTC may be effective for SSD.

For laughter detection, the CTC model is superior to the
attention-CTC model. Laughter has different sequential acous-
tic characteristics because it is composed of a time series of
voiced exhalation, voiced inhalation, unvoiced exhalation, and
unvoiced inhalation components. The CTC model, which learns
the sequential characteristics of speech signals, might learn
complicated sequence characteristics of laughter better than the
other models and thus show better laughter detection perfor-
mance. The attention model yielded the worst performance
among the three models for all event detection experiments.
The attention model often produced errors such as “speech -
> pause -> speech -> pause -> speech -> ...” in the detec-
tion results. Attention mechanisms require a large amount of
training data, and the attention mechanism may not have been
trained well in this experiment because of the insufficient train-
ing data. Additional detection experiments were conducted for
the attention-CTC model using smaller training datasets, i.e.,
the AGSC dataset without data augmentation. As a result, sim-
ilar errors were observed. Therefore, the insufficient training
dataset may cause the lower accuracy of the attention model.
Since collecting more spontaneous laughter and screaming data
would be costly, training data cannot be easily increased. Thus,

Ref. : LaughterScream Speech

Figure 2: Audio waveforms and spectrograms of audio se-
quences with all events correctly distinguished.

it is important to explore data augmentation methods special-
ized for SSD.

In this experiment, misdetected sequence data were inves-
tigated to determine how laughter and screaming were con-
fused. More accurate detection results were obtained with au-
dio sequences consisting of fewer events than those consisting
of many labelled events. Figure 2 shows the audio waveforms
and spectrograms of the audio sequences containing laughter,
screaming, and speech that were correctly distinguished by all
models. Laughter was often confused with pauses. This may be
due to the acoustic similarity between pauses and the unvoiced
inhalation in the latter part of the laughter signal, as shown in
Fig. 2 (between 4 and 6 seconds). Screaming is often confused
with speech. The spectrogram of the scream shows clear har-
monics. This acoustic tendency is similar to the harmonics of
the speech, indicating that misdetection may have occurred.

5. Conclusion
In this study, laughter and screaming detection experiments
were conducted to facilitate human-machine interactions. First,
four-class SSD experiments including laughter and screaming
were conducted using three feature sets. The results showed
that in the closed corpus experiments, 81.83% of laughter
and 81.68% of screaming were accurately detected using the
FBANK+ComParE feature set, indicating that laughter and
screaming were detectable. In the open corpus experiments,
79.38% of laughter and 71.63% of screaming were accurately
detected using the FBANK+ComParE feature set, indicating
that the model was robust. Then, detection experiments were
conducted with three end-to-end models, and the results showed
that the CTC and attention-CTC models achieved the most ac-
curate laughter and screaming detection results, respectively,
indicating that CTC is effective for SSD. Consequently, the
attention-CTC model was effective for SSD when using large
amounts of data. Future research should be developed a more
appropriate SSD method to overcome the influence of a lack
of laughter and screaming speech material on the results, and
an architecture simultaneously performs SSD and ASR to accu-
rately distinguish various social signals from speech.
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