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Abstract
In terms of automatic speech recognition (ASR), Swedish be-
longs to the group of less-resourced languages, as publicly
available training data is limited to a few hundred hours of
mostly read speech. To acquire larger amounts of more realistic
data, we investigate the existing multilingual approaches, and
also propose two new ones, which combine Swedish with pre-
viously created Norwegian data and models. We use them for
efficient automatic harvesting of spoken Swedish from broad-
cast, parliament, YouTube, and audiobook archives. The com-
bined models significantly speed up the harvesting process and
improve the final Swedish end-to-end (E2E) ASR system. We
evaluate it on datasets covering various applications and do-
mains; they provide performance better than the state-of-the-
art commercial cloud services. We have made all of our test
datasets publicly available for future comparative experiments.
Index Terms: end-to-end speech recognition, transfer learning,
multilingual training, Scandinavian languages, Swedish

1. Introduction
Swedish (SWE), together with Norwegian (NO) and Danish,
belongs to the North-Germanic language branch. It is the most
utilized of these languages, spoken by 9.2M people. (The others
have about 5M speakers each.) Research in the field of ASR for
Scandinavian languages was active mainly in the 1990s while
the two following decades brought just modest progress. There
were several reasons for that, the main being limited speech re-
sources. Moreover, the traditional ASR approach requires ex-
tensive vocabularies (due to compound words and suffixed arti-
cles) and many pronunciation variants (due to dialects).

The advent of modern E2E systems [1] has partly elimi-
nated such issues; and this progress has motivated new research
activities. Several multilingual systems (e.g., [2, 3, 4]), also
covering Swedish, have been developed, but they have mainly
been aimed at experimenting with joint models for multiple lan-
guages, rather than targeting the best possible monolingual per-
formance. Some recently completed MSc theses have focused
on adopting the E2E approaches solely to Swedish, and at least
two papers have been published in this area since 2020 [5, 6].
Their authors tried to utilize existing E2E frameworks (namely
unsupervised wav2vec 2.0 [7]) and available models together
with public datasets (NST and Common Voice – see Sec. 4.1)
to tune the models to be viable specifically for Swedish ASR.
Results obtained on these two sets look very promising, with a
word error rate (WER) below 10%. However, experiments with
independent and more realistic data yield notably worse perfor-
mance. This observation confirms the well-known fact that E2E
systems require much larger training resources covering differ-
ent speaking styles, various environments, and diverse topics.

The easiest way to collect more training data is to use pub-
lic sources such as broadcast, parliament, or YouTube archives
that offer both audio and text. Topic and lexicon diversity can
be enlarged by utilizing audiobooks (along with corresponding
e-books), which are available in large quantities, even though
not free of charge. As none of these sources provides data that
could directly be used for training, we need tools that perform
three basic tasks: a) prepare audio and text data for alignment;
b) detect parts that match; and c) split them into files eligible for
training. This can (almost) automatically be done by first em-
ploying an existing ASR system that converts audio files into
text before the three tasks are consecutively executed. The data
harvesting process is iterative, starting with an initialized (boot-
strapped) system, which is repeatedly retrained on increasing
amounts of data. However, for less-resourced languages, this
iterative process can be rather slow and inefficient; we therefore
investigate methods to boost it by leveraging data and models
(or their parts) already available for other languages.

In this paper, the target language is Swedish, and we present
and compare several multilingual techniques, such as transfer
learning and multilingual training, which allow us to utilize pre-
viously created Norwegian data and E2E models to collect more
than 1,000 hours of realistic training data and make an ASR
model that performs well in various practical applications.

2. Related work
Due to the already mentioned data hunger of E2E systems, the
importance of the bootstrapping phase is even greater now, par-
ticularly for low-resourced languages. In recent years, several
techniques, especially transfer learning [8, 9] and multilingual
training [10, 11], have proven to be successful in bootstrapping
E2E models. In transfer learning, the model for the new (target)
language is initialized from an already existing ASR model of a
high-resourced language, while a joint model is trained on data
from multiple languages (including the target one) within mul-
tilingual training. These techniques can be combined [12, 2]
and also used in conjunction with other methods, such as semi-
supervised learning [13], data augmentation [14], and text-to-
speech utilization [15].

Transfer learning has recently been applied to bootstrap-
ping different E2E architectures. A pre-trained multilingual
model was used to initialize several low-resource languages in a
hybrid connectionist temporal classification [16] and attention-
based encoder-decoder [17] (CTC/AED) model [18, 12]. For
the recurrent neural networks transducer (RNN-T) [19] frame-
work, four different variations of transfer learning were studied
in [20] and a combination of transfer learning with multilingual
training, text-to-text mapping, and synthetic audio techniques
in [21].
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The focus of the E2E multilingual training lies in two inter-
connected directions – training a massive model capable of tran-
scribing as many languages as possible [2, 3, 22], and improv-
ing the performance of low-resourced languages by utilizing
high-resourced (related) ones [23, 24]. For the latter direction,
different E2E architectures, such as hybrid CTC/AED [18], and
RNN-T [21], have been exploited. Furthermore, the overall
performance can be improved by providing language identity
information that guides the system to produce better transcrip-
tions of the target language [25]. Commonly, this is done by
appending a one-hot vector [26], or a learned language embed-
ding [27]. Moreover, a joint language-independent multilingual
ASR with language identification has been proposed in [28, 12].
Multi-headed models (per language group) have also been ex-
plored [2]. Lastly, the issue of data imbalance between high-
and low-resource languages has also been studied [29].

Lately, self-supervised learning, a technique extracting gen-
eral data representations from unlabeled data, has produced
many excellent results even when fine-tuned on severely lim-
ited amounts of data, e.g., wav2vec 2.0 [7] or w2v-BERT [30].
In [31], the authors built on the wav2vec 2.0 and proposed
cross-lingual speech representation (XLSR). XLS-R [32] fur-
ther extended the previous works. Joint unsupervised and su-
pervised training for multilingual ASR was proposed in [33].

3. E2E architecture and its modifications
Within this work, the ESPNet platform [34] empowers the
adopted end-to-end architecture corresponding to the joint com-
bination of CTC and AED. Our model thus comprises three
parts: a shared encoder represented by a conformer [35] and
two decoders: CTC-based and attention-based, using a CTC
weighting factor equal to 0.3.

The shared encoder is preceded by two sub-sampling con-
volutional layers (kernel size 3×3 and stride 2), and it includes
12 blocks, each having eight attention heads. The CTC decoder
consists of a linear layer, which transforms the encoder output
to the CTC activation. The attention decoder is a transformer,
and it contains six blocks, each with eight attention heads. In
each model block, the dimension of attention is set to 512, and
the number of units of the position-wise feed-forward layer is
2,048. In total, the entire model contains 136M of parameters.

The input speech is parameterized to 80-dimensional Mel-
spectral filter banks (25ms long), and SpecAugment [14] is ap-
plied on the fly to augment training data (with a length limited to
25 s). The model is trained for 120 epochs using the Adam opti-
mizer with a batch size of 20, and the final model is obtained by
averaging 30 epochs with the lowest loss on a 10-hour dev set.
For decoding, the CTC prefix beam search algorithm is used.

It has been shown [36] that a slight boost to E2E ASR can
be achieved if the output symbols are not just single letters but
word fragments derived from the most frequent words. In our
case, the SentencePiece toolkit [37] is used to get the 5,000 most
frequent tokens from input speech lower-case annotations.

Moreover, the encoder can be initialized from an already
existing model (e.g., of a high-resource language) via transfer
learning [18]. A comparison between the non-initialized (mono)
and initialized (init) approaches is depicted in Fig. 1a) and 1b).

3.1. Adopted and proposed multilingual modifications

We explore four different variations of multilingual training. In
the first case (denoted joint), the training datasets of multiple
languages are combined into a single training set, and the model
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Figure 1: Adopted architecture and its modifications applied to
Swedish as a target language and Norwegian as a support one.

is simply trained as a monolingual one, as shown in Fig. 1c).
The number of model parameters remains the same (i.e., 136M).

The second variation (joint-with-lid) outlined in Fig. 1d) ex-
tends the previous modification. In this case, the adopted model
is guided by a one-hot language identity vector [26] appended
to the Mel-filter banks during both the training and decoding.

The third variant is further denoted as multi-decoder. This
proposed model (similar to [2]) comprises a pair of language-
specific decoders for every language, as depicted in Fig. 1e). It
thus has 44M language-specific parameters for every language
and 92M parameters shared among all of the languages.

The last modification (multi-layer) we propose employs a
language-specific CTC decoder for each language and a shared
attention decoder with language-specific layers, as highlighted
in Fig. 1f). These layers correspond to input embeddings and
output linear layers of all blocks. The main advantage is that
the parameters of all attention heads can thus be trained using
all the multilingual data. This model only has 13M language-
specific parameters per language, and 126M shared ones.

The multilingual models are trained using the same hyper-
parameters as the monolingual ones. In this scenario, each train-
ing batch comprises data belonging to only one language. For
the last three modifications, prior knowledge of the language in
each recording is required during training and decoding.

4. Experimental work
4.1. Free data sources and overview of test sets

At present, two large Swedish datasets are freely available. The
largest and most widely used is named NST. It was created
in the early 2000s and targeted the development of dictation
programs for the three Nordic languages. Later, the data was
adopted by the Norwegian National Library and made publicly
accessible. Its Swedish part1 contains 480 hours of speech

1https://nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-16
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Table 1: Swedish test set collection.

test set hours words words not seen [%]

NST5h 5.0 26,944 1.4
CV 6.3 36,922 0.5

SVT 4.1 37,056 1.9
PAR 3.0 25,884 0.7
YTB 0.6 5,601 3.7

ABOOK 1.0 6,904 8.0
FLEURS 2.3 15,507 5.4

all 22.3 154,818 2.0

(from almost 1,000 speakers). The set is large, but has some
severe limitations. It is made of read sentences, out of which
many are repeated by all of the speakers, and others contain just
short commands or phonetically balanced (but not realistic) ut-
terances. The data is officially split into the training and testing
parts. From the former, we have sorted 402 hours for train-
ing after removing most of the repeated utterances. For testing,
we randomly selected five hours (out of 100 hours available)
to make this set’s size comparable to the other ones. (Both the
five-hour and full sets yield similar results.)

The second dataset is the Swedish part of Common Voice2

(CV, version 9), which offers 41 hours for training and six hours
for testing. It is made of read utterances, too, but with much-
varying speaking styles and recording conditions.

As we want to develop and evaluate ASR systems aimed at
various application domains, we have prepared several other test
sets. The SVT set is made of 10 news shows broadcast by the
eponymous TV channel in 2022. The shows are complete with
one exception; non-Swedish spoken parts have been removed.
The PAR set is made of talks that occurred in the parliament
during the so-called interpellations in 2022. This set consists of
177 audio files, each spoken by a different person. The YTB
set is a collection of recordings from several YouTube channels
covering various topics. Another source is a short documentary
audiobook dealing with international crime that contains many
non-Swedish names and technical terms. It is narrated by a per-
son not occurring in training. As the last item, we have included
the test part of the recently popular FLEURS dataset [38].

The test sets altogether cover several speaking styles (read,
planned, spontaneous, emotional), recording conditions (studio,
large hall, home equipment), and various topics. Each file of
these sets was transcribed automatically and then edited by a
native speaker. Table 1 gives more information about the data,
including the rates of the words not seen in the final training set.

4.2. Mono- and multi-lingual models trained on free data

We started our research by training an E2E model on the freely
available Swedish data (NST+CV, 443 hours). As shown in the
first row of Table 3, the WER values are reasonably low for the
matched test sets (NST5h, CV) but, obviously, much higher for
the two selected independent sets (SVT, PAR). Before launch-
ing a time-consuming process of harvesting additional training
data, we implemented and evaluated all the modifications pre-
sented in Sec. 3. We combined the same Swedish data with data
and models developed previously in our lab. We utilized an En-
glish model (trained on 10,000 hours of speech) and a Norwe-
gian one (based on 900 hours collected from public sources in

2https://commonvoice.mozilla.org

Table 2: Overview of Swedish training data (1,226 hours).

train set hours style envir. availability

NST 402 read clean free
CV 41 read mixed free
PAR 349 mixed mixed harvested

SVT/YTB 73 mixed mixed harvested
ABOOK 361 read clean paid

2022 [39]). As expected, the models using Norwegian achieve
the best results. It is mainly because the two languages (SWE
and NO) are closely related; another reason is that, similar types
of data sources were used. The exact impact of including Nor-
wegian in the model-building process is presented in the rest of
Table 3. All five investigated techniques yield significant WER
reduction over the monolingual SWE model and are utilized in
the following steps.

4.3. Automated data-harvesting process

In order to improve the E2E model, we have identified several
Swedish public sources with large amounts of audio and associ-
ated texts. They, in particular, come from the Swedish radio and
television company SVT with several channels and programs
complemented by subtitles (mainly TV news) or text summaries
(radio shows). Another relevant source is the Swedish parlia-
ment’s archive of videos from plenary sessions and their official
transcripts. There are also several Swedish YouTube channels
with subtitles, although their number is still small. In general,
the texts associated with these speech records are only loosely
related, so we need a safe and reliable data harvesting scheme.

To broaden the scope of the training corpus, we have cho-
sen 30 pairs of audio- and e-books (with respect to their topic,
genre, narrator, and size) and purchased them in a downloadable
format. The same harvesting approach is used here because the
written and spoken text is not guaranteed to match exactly.

In our harvesting scheme, the data are processed as follows:
First, the original (usually long) audio files are split into chunks
shorter than 25 seconds. This is performed by the available ASR
system, which also employs a voice activity detector [40] to de-
termine suitable split points. The ASR output is aligned (using
the Levenshtein distance method) with the provided reference
text, which is then split into fragments assigned to the chunks.
The second phase runs in iterations. In each, we use ASR sys-
tem with all the model variants to transcribe the chunks and
compare their outputs to the reference fragments. Those with a
character error rate below 2% are added to the train set. Using
multiple models increases the chance that more chunks meet the
criterion. After processing all the available chunks, new variant

Table 3: WER [%] of models (mono- and bi-lingual SWE/NO)
based on freely available Swedish training data (NST+CV).

model NST5h CV SVT PAR

mono SWE 5.9 7.5 30.2 24.1
init SWE from NO 4.6 6.0 25.3 19.7
joint SWE+NO 4.5 6.9 25.9 20.2
joint-with-lid SWE+NO 4.4 6.8 25.5 20.7
multi-decoder SWE+NO 4.5 6.5 25.7 19.9
multi-layer SWE+NO 4.5 6.2 26.2 20.3
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Table 4: WER [%] of SWE models (using NO as a support language) trained with increasing amounts of data across all test datasets.

model 25 h 50 h 75 h 100 h 150 h 200 h 250 h 300 h 500 h 1000 h

mono SWE 66.4 39.8 28.1 22.8 18.1 16.1 14.7 13.8 12.0 10.8
init SWE from NO 44.7 28.9 23.2 19.2 14.9 13.5 12.4 12.3 11.1 9.9
joint SWE+NO 22.6 19.5 17.6 16.2 14.6 13.7 13.9 12.5 11.9 10.4
joint-with-lid SWE+NO 22.1 20.3 17.8 16.0 14.3 13.7 13.1 12.6 11.7 10.4
multi-decoder SWE+NO 28.4 21.1 17.8 17.0 14.0 13.5 12.7 12.2 11.6 10.3
multi-layer SWE+NO 24.0 19.4 17.4 17.1 14.5 13.5 12.9 12.2 11.8 10.1

models are trained. This procedure is repeated until the number
of newly acquired training data drops below a reasonable level.

We applied this iterative scheme to all of the downloaded
audio files. Within 10 iterations, we have collected 1,226 hours
of diverse training data, whose structure is presented in Table 2.
The process can be fully automated. However, it is rational to
introduce minor human assistance into it to increase the amount
of harvested data. In each iteration step, we have identified the
most frequent errors (typically, foreign names in news and au-
diobooks) and reviewed at least a few corresponding files.

4.4. Effect of increasing amounts of data

To fully investigate which variant of the architecture (and when)
is more suitable for bootstrapping a new language, we have ran-
domly sampled the gathered data and trained all the variants
with different amounts of data ranging from 25 to 1,000 hours.
Each addition of data (e.g., from 25 to 50 hours) re-uses the
previous ones (25 hours) to simulate better bootstrapping.

The results are presented in Table 4 in the form of weighted
WER values across all of the test datasets (Table 1). They show
a clear trend: multilingual training (in any of its modifications)
helps tremendously in the beginning when the amount of target
data is severely limited, and the data from the closely related
language helps to fill in the gaps (e.g., the difference in WER
values between the mono- and any multi-lingual model is over
35% when using only 25 hours of the target language). Around
the mark of 200 hours, the performance starts to equalize, and
initialization from a related language (init) becomes a cheaper
option (less training time) and, in the end, even a slightly better
one (lower WER value). In this case, the related language in
multilingual training starts to cause more confusion. Out of the
multilingual modifications, the proposed multi-layer one per-
forms the best as it separates only the language-dependent parts
of the model; but all of the modifications are beneficial. Fi-
nally, not even 1,000 hours is sufficient for a solely monolingual
model to outperform any use of a related language.

4.5. Final model and comparison to commercial ASR

Eventually, we have trained the final model (on NVIDIA A40
GPU in 7 days) on the complete training corpus (1,226 hours)
using the technique identified as the best-performing in Sec. 4.4,
i.e., initialization by Norwegian model. The results are given in
Table 5. Unsurprisingly, the lowest WER values appear for the
read speech sets (NST5h, CV, and ABOOK), though the content
of the last one is quite challenging, with 8% of unseen words.
For the more realistic sets (SVT and PAR), we can observe sig-
nificant improvements compared to the initial results in Table 3
(e.g., WER of the SVT set improved from 25.3% to 12.6%),
given by the enlargement of the training set by the correspond-
ing type of data. Moreover, the WER of the FLEURS set proves
that the model can generalize well for data not seen in training.

Table 5: WER [%] comparison to commercial solutions.

test set our final MS Azure Google Cloud

NST5h 2.9 5.5 24.9
CV 5.9 10.5 22.4

SVT 12.6 10.8 35.0
PAR 7.3 11.5 26.5
YTB 11.3 10.1 31.4

ABOOK 3.9 11.4 23.7
FLEURS 12.4 12.9 21.1

all 8.0 10.1 26.8

To evaluate our results in a broader context, we have sub-
mitted the test data to the two commercial services that have
Swedish in their portfolio: Microsoft Azure (Speech to Text v.
02/2023) and Google Cloud (Speech-to-Text v. 02/2023). The
achieved WER values are added to Table 5. As we have no in-
formation about the two systems and their resources, let us just
briefly comment that our results slightly outperform those of
Microsoft, while the Google ones are significantly worse.

5. Conclusions
In this work, we have developed a hybrid CTC/AED-based E2E
ASR model for Swedish. At first, we have combined data from
freely available datasets with several existing and two new mul-
tilingual techniques to iteratively harvest more than 1,200 hours
of public training data. A closely related language – Norwegian
– has been used as the supporting one. During this process, we
have shown that multilingual training is more beneficial with
limited data, while transfer learning becomes computationally
cheaper and even further reduces the WER values when enough
data is provided. After that, we have trained the final initialized
model using the whole training set and the achieved results on
average outperform two available commercial cloud services.
The evaluation makes use of a diverse set of the testing data we
have gathered. Moreover, we release the test sets or links to
their sources on our cloud3 along with detailed logs from the
final tests, including ASR-to-reference word alignments.
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