ISCA Archive Interspeech 2023
ISCA Archive Interspeech 2023

End-to-End Joint Target and Non-Target Speakers ASR

Ryo Masumura, Naoki Makishima, Taiga Yamane, Yoshihiko Yamazaki, Saki Mizuno, Mana Ihori, Mihiro Uchida, Keita Suzuki, Hiroshi Sato, Tomohiro Tanaka, Akihiko Takashima, Satoshi Suzuki, Takafumi Moriya, Nobukatsu Hojo, Atsushi Ando

This paper proposes a novel automatic speech recognition (ASR) system that can transcribe individual speaker's speech while identifying whether they are target or non-target speakers from multi-talker overlapped speech. Target-speaker ASR systems are a promising way to only transcribe a target speaker's speech by enrolling the target speaker's information. However, in conversational ASR applications, transcribing both the target speaker's speech and non-target speakers' ones is often required to understand interactive information. To naturally consider both target and non-target speakers in a single ASR model, our idea is to extend autoregressive modeling-based multi-talker ASR systems to utilize the enrollment speech of the target speaker. Our proposed ASR is performed by recursively generating both textual tokens and tokens that represent target or non-target speakers. Our experiments demonstrate the effectiveness of our proposed method.