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Abstract
Neural end-to-end Audio-to-Score (A2S) transcription aims to
retrieve a score that encodes the music content of an audio
recording in a single step. Due to the recentness of this formu-
lation, the existing works have exclusively addressed controlled
scenarios with synthetic data that fail to provide conclusions ap-
plicable to real-world cases. In response to this gap in the litera-
ture, this work introduces a novel assortment of real saxophone
recordings—together with their digital scores—and poses sev-
eral experimental scenarios involving real and synthetic data.
The obtained results confirm the adequacy of this A2S frame-
work to deal with real data as well as proving the relevance of
leveraging synthetic interpretations to improve the recognition
rate in scenarios with real-data scarcity.
Index Terms: Audio-to-score transcription, Real-world data,
Deep neural networks

1. Introduction
Attaining structured digital representations from music sources,
a process typically known as (music) transcription, represents
a long-standing problem in the Music Information Retrieval
(MIR) area [1, 2]. Automatic Music Transcription (AMT)
stands as the research field devoted to devising computational
approaches capable of retrieving a high-level symbolic repre-
sentation of the music content in an audio file [3].

Due to the inherent difficulty of the task, attempts to AMT
usually resort to a note-level transcription, i.e., that in which
the acoustic piece is encoded in terms of the onset, offset, pitch
values, and musical instrument of the estimated notes [4]. In
this regard, while such representation is deemed useful for a
number of tasks, the particular goal of achieving a score-level
codification—namely, Audio-to-Score (A2S) transcription—
has been scarcely addressed in the literature as it entails the
additional challenge of inferring non-audible information (e.g.,
clefs or meter indicators) [5].

Early A2S research works (e.g., [6, 7]) mainly relied on
pipeline-based schemes to alleviate the complexity of the task.
In those frameworks, each stage estimated individual aspects of
the transcription (e.g., notes, key and time signatures, streams,
bars, or voices) that were eventually integrated. Nevertheless,
the issues related to error propagation between the stages, as
well as the adequacy of the A2S methods to specific scenarios
based on particular heuristics, have hindered their practical use.
In contrast, recent advances in Deep Learning have enabled the
development of neural holistic or end-to-end A2S methods that
perform the transcription process in a single step to avoid the
aforementioned issues [8, 9, 10].

The previous A2S works have exclusively addressed con-
trolled experimental scenarios, being the sole use of synthetic

data one of the most limiting points [11, 12]. Hence, there ex-
ists a need to analyze and provide insights when addressing real
recordings [13, 14], since their richer expressiveness and varied
quality conditions typically entail higher challenges than those
cases in which synthetic data is exclusively contemplated.

To our best knowledge, this work constitutes the first to ad-
dress the commented gap in the neural end-to-end A2S field
by comparatively studying the use of recorded and synthetic
audio pieces as well as their possible synergistic combination
in the context of saxophone interpretations. Our contributions
are: (i) the creation of a corpus of real-world saxophone record-
ings specifically devised for end-to-end A2S transcription; (ii)
comprehensive experimentation to quantitatively assess the lim-
itations of learning with real or synthetic data to transcribe
recorded pieces in single-step end-to-end A2S pipelines; and
(iii) the study of mechanisms to leverage synthetic data to im-
prove the transcription performance when dealing with scenar-
ios of real-data scarcity.

2. Saxophone recordings for A2S
Despite a large number of existing works in the AMT field,
there is a lack of benchmark corpora for end-to-end A2S, es-
pecially when addressing real data. Hence, this work presents
a collection of recorded saxophone performances together with
their digital music scores.1

Having the saxophone as our main instrument relays in
the expressive ability, dynamics (piano-forte), variety of ef-
fects during sound emission, and diverse musical styles. These
characteristics, even though common to the wind family instru-
ments, can be found regularly and accentuated in saxophone
recordings. Note that, while the choice of the saxophone may
be considered simplistic, as it represents a monophonic instru-
ment, no previous end-to-end A2S work—neither monophonic
nor polyphonic—has assessed the capabilities of such formu-
lation with real recordings. In this regard, a thorough experi-
mental study resorting to monophonic saxophone performances
represents a valuable contribution to the field, without the ques-
tion needs to the adequacy of the A2S method (which is still not
clear for polyphony).

The presented assortment comprises 1026 recordings of
real interpretations from two different types of saxophone—
tenor and alto—along with their corresponding scores in Kern
format [15]. This notation format is one of the most frequently
used representations in computational music analysis due to its
features, including a simple vocabulary, an easy-to-parse file
structure—convenient for end-to-end A2S applications—and its
compatibility with dedicated music software [16, 17] that can
automatically convert it to other music encodings.

1Accessible at https://grfia.dlsi.ua.es/audio-to-score
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The compositions in the set, which span for approximately
3 hours of total duration, comprise examples of melodies, ex-
ercises, scales, and a small number of music incipits extracted
from [18]. Table 1 provides an additional description of the
main features of this assortment.

Table 1: Data description in terms of the average duration,
mean number of symbol annotations per score, and pitch range
for the contemplated saxophone types.

Saxophone Average
duration (s)

Mean symbols
per score

Pitch range
(transposed to C)

Tenor
10.8± 2.8 27.0± 8.6

A♭2 - G5

Alto D♭3 - C6

Regarding the collection process, all pieces were recorded
in a home studio by musicians proficiently trained in the instru-
ment. Different tempi, styles, and rhythm metrics were consid-
ered to increase the variability in the data, being a metronome
used to avoid considerable tempo deviations. Note that, the
transposing nature of the saxophone—i.e., music notation is not
written at concert pitch—prevents its direct use in A2S since
a given note token does not represent the same pitch for all
variants of this family of instruments. Hence, all scores were
processed to unify the reference pitches to the C note: scores
in the alto saxophone (tuned in E♭) were applied an ascendant
minor third whereas the tenor saxophone annotations (tuned in
B♭) were transposed in a descendant major second.

Finally, the scores include additional annotations related to
the interpretation—i.e., altissimo, bend, breath, fall, false fin-
gering, glissando, growl, trill, and vibrato—as well as meta-
data detailing the piece type (scale, melody, exercise, etc.), the
instrument model, the mouthpiece, the reed, and the performer
profile. Such descriptions are expected to enable the use of this
assortment in other MIR works beyond A2S transcription as,
for instance, expressive performance recognition.

3. Methodology
3.1. Learning framework

Based on other works addressing A2S transcription [8], we
consider a Convolutional Recurrent Neural Network (CRNN)
scheme. This architecture comprises a block of convolutional
layers, which learn the adequate set of features, followed by a
group of recurrent stages, which model the temporal dependen-
cies of the feature-learning block, and a final fully-connected
network with a softmax activation that retrieves the posteri-
ogram to be decoded. The Connectionist Temporal Classifica-
tion (CTC) training procedure [19] is contemplated to achieve
an end-to-end scheme as it allows training the network using
unsegmented sequential data.

Formally, let T ⊂ X × Σ∗ be a set of data where sam-
ple xi ∈ X of acoustic recordings is related to symbol se-
quence zi =

(
zi1, zi2, . . . , zi|zi|

)
∈ Σ∗, where Σ repre-

sents the symbol vocabulary used for encoding the music score.
Note that the use of CTC to model the transcription task as
an end-to-end sequence labeling framework requires the inclu-
sion of an additional “blank” symbol in the Σ vocabulary, i.e.,
Σ′ = Σ ∪ {blank}.

At prediction, for a given datum xi ∈ X , the model outputs
a posteriogram pi ∈ R|Σ′|×K , where K represents the number
of frames given by the recurrent stage. Eventually, the predicted
sequence ẑi is commonly obtained resorting to a greedy policy

that retrieves the most probable symbol per frame in pi and a
subsequent mapping function that merges consecutive repeated
symbols and removes the blank labels.

3.2. Train data scenarios

With the aim of quantitatively assessing the transcription per-
formance of real music works when using real or synthetic train
data, we pose two different scenarios that essentially differ in
the nature of such train data: (i) a first one, denoted as Tr in the
rest of the work, that uses the real saxophone recordings pre-
sented in Section 2; and (ii) a second case, denoted as Ts, that
contemplates sound synthesis procedures to generate an artifi-
cial version of the real recordings based on the annotated score.

In addition, based on recent work in the related Auto-
matic Speech Recognition field [20], we study the possibil-
ity of leveraging synthetic data to improve A2S transcription
when dealing with cases of real-data scarcity. For that, we pro-
pose the use of a combined train set Tc = {x ∈R Tr}θ·|Tr| ∪
{x ∈R Ts}(1−θ)·|Ts|, where θ ∈ [0, 1]—parameter used for
modeling different experimental scenarios—denotes the per-
centage of real recordings in the assortment.

Note that, while the Tr and Ts cases consider the standard
strategy of using all available data to train the model, two differ-
ent policies are considered for the Tc combined one: (i) a Mixed
case in which the set Tc is directly used for training the model;
and (ii) a Fine-tuning approach that restricts to the synthetic part
of the assortment to train the model so that, after convergence,
the available set of real data is used for fine-tuning.

4. Experimentation
4.1. Data preprocessing and representation

As commented, this work constitutes the first to gather insights
related to the use of recorded and synthetic audio pieces in A2S
transcription. Thus, while the quality and expressiveness of the
real interpretations may be deemed as fixed attending to the
skills of the musician and the room conditions of the recording
session, synthetic elements severely differ based on the particu-
lar generation procedure contemplated.

Having said that, we consider two different audio synthesis
methods for saxophone timbre to avoid possible biases and ob-
tain more general conclusions: (i) the sample-based FluidSynth
software with a regular-quality SoundFont bank; and (ii) the
MIDI Differentiable Digital Signal Processing (MIDI-DDSP)
neural synthesis model [21] due to its capability of producing
remarkably realistic interpretations.

The input and output representations are based on those
used in recent works [10, 22]. First, all pieces—recorded and
synthesized—are resampled to a rate of 44 100Hz. A Short-
Time Fourier Transform representation with log-spaced bins is
then obtained considering A4 = 440Hz as the reference pitch
with 48 bins per octave, a 4096-sample window (92.88ms), and
an 882-sample hop size (20ms).

We consider a subword-based encoding for the output cod-
ification, exemplified in Fig. 1, in which each note token is dis-
entangled into its duration, pitch, and alteration components,
remaining the rest of the score-level elements—clefs, key sig-
natures, bar lines, measures, and tempo indications—unaltered.
This results in a cardinality of |Σ| = 75 and |Σ| = 73 symbols
for the tenor and alto saxophones, respectively.
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Figure 1: Graphical example of the score encoding. The Kern row depicts the symbolic equivalent of the Score one, whereas the
Decoupled Kern row shows the format used by our transcription model. Note that the latter representation disentangles note tokens
into their rhythm (in blue), pitch (in green), and accidental (in yellow) components, remaining the rest of the symbols unaltered.

Finally, a 5-fold cross-validation scheme is contemplated in
which, for each fold, the corpus is divided into three partitions
at a file level with sizes 70%, 10%, and 20% for the train, vali-
dation, and test sets, respectively.

4.2. Evaluation metrics

We consider two complementary figures of merit typically used
in the A2S field [9]: (i) the Symbol Error Rate (SER), a non-
musical metric, that is computed as the average number of el-
ementary editing operations (insertions, deletions, or substitu-
tions) required to convert prediction ẑi into reference zi, nor-
malized by the length of the latter; and (ii) the MV2H met-
ric, specifically devised for A2S and introduced in [23], that
summarizes, in a single value, the performance of the scheme
in terms of its multi-pitch detection, voice separation, metrical
alignment, note value detection, and harmonic analysis capa-
bilities. For simplicity, while originally devised for polyphonic
data, no components are adapted or discarded in the MV2H met-
ric to the presented case of monophonic saxophone pieces.

4.3. Neural model configuration

The CRNN scheme is based on that used in recent works [1, 2]:
two convolutional layers that apply 8 filters of size 2 × 10 and
5 × 8, respectively, considering a Leaky ReLU activation with
a negative slope of α = 0.2 and max-pooling stages of size
and striding factors of 2 × 2 and 1 × 2. These feature maps
are fed into two Bidirectional Long Short-Time Memory layers
with 256 hidden units each, and a dropout value of d = 50%
followed by a fully-connected network with |Σ′| units.

The models were trained with a batch size of 16 elements
considering the ADAM optimizer with a fixed learning rate of
10−3. We iterate for 300 epochs, keeping the weights that min-
imize the SER metric in the validation partition. Finally, all ex-
periments were run using the Python language (v. 3.8.13) with
the PyTorch framework (v. 1.13.0) on a single NVIDIA A100
card with 40GB of video memory.

4.4. Results

Table 2 presents the average test results obtained with the pro-
posed experimental scheme in terms of the SER and MV2H
metrics. Note that all results correspond to the case of using
real test data except for the All synthetic column in which both
train and test constitute synthesized performances.

Attending to the figures obtained, similar recognition rates
are observed in the scenarios in which both the train and the
test data come from the same distribution. More precisely, the
Real column—the case of recorded data—depicts average SER

and MV2H values of 23% and 55%, respectively, being the cor-
responding scores in the All synthetic column—data entirely
synthesized—around 20% and 70%, for the same metrics. This
proves the validity of the contemplated end-to-end A2S formu-
lation for real data, given that the results obtained do not re-
markably degrade from those using synthetic data for both the
train and test partitions (as in all previous works).

Focusing on the case of real test data (Single train scenario
column), the use of the Ts synthetic data assortment to train the
recognition model (columns FluidSynth and MIDI-DDSP, de-
pending on the synthesis method) entails a steep performance
decrease compared to that obtained when considering the Tr

set of real data (column Real). More in detail, the SER metric
loosely degrades from a value of 23% for both types of saxo-
phone to error figures of 55% and 40%, depending on the syn-
thesis approach. Similarly, the MV2H roughly decreases from a
score of 55% to a value of 13%, independently of the nature of
the synthetic data and saxophone type. Such a fact evinces the
limitations of these sound synthesis methods to train recogni-
tion systems aimed at transcribing real recordings, most likely
due to the lack of realism in certain aspects (e.g., musical ex-
pressiveness, recording artifacts, or timing deviations).

In addition, while both synthesis approaches prove to be in-
sufficient for the posed real data transcription task, it is observed
that the MIDI-DDSP case systematically yields more competi-
tive results than the FluidSynth one. This suggests that more ad-
equate and realistic methods can lead to performance improve-
ments since the former method currently represents a state-of-
the-art neural synthesis approach known by the realism of the
results, at least when compared to other techniques (e.g., the
FluidSynth one). In this regard, the rest of the experiments in
the work only contemplate the MIDI-DDSP synthesis method.

Regarding the Tc case of combining real and synthetic data
to target real recordings (column Combined train scenario), the
blending values of θ ∈ {10%, 20%} have been contemplated
to simulate a shortage of real train data. For reference pur-
poses, the No synth case provides the figures obtained when
exclusively considering the subset of real data.

The results obtained in the commented scenario prove the
validity of leveraging synthetic data to palliate real data scarcity
in A2S transcription. The recognition rates in the θ = 10% case
depict certain improvements from the sole use of real recordings
to the combined train data of up to 10% and 20% for the SER
and MV2H metrics, respectively, depending on the particular
saxophone and train policy. This point suggests a synergistic
relationship between real and synthetic data since, even with a
small number of recordings, the method outperforms the case of
exclusively contemplating real pieces. Note that these observa-
tions match those in the θ = 20% case with the only difference
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Table 2: Results in terms of the SER (%) and MV2H (%) metrics when considering real recordings (Tr), synthetic corpora (Ts), or
their combination (Tc) as train data, denoting parameter θ the overall percentage of real recordings in the latter scenario. All cases
are evaluated on real recordings except for the All synthetic column in which both train and test constitute synthesized performances.
Symbols ↑ and ↓ depict whether the metrics are positively or negatively valued, respectively. Note that the Tc combined train scenario
only contemplates the MIDI-DDSP synthesis method.

Metric Saxophone
type

Single train scenario (T ) Combined train scenario (Tc) All synthetic (train & test)

FluidSynth MIDI-DDSP Real Case θ = 10% θ = 20% FluidSynth MIDI-DDSP

↓ SER

Tenor 55.7 41.6 23.9
No synth 41.3 34.1

21.4 19.8Fine-tuning 39.5 32.4
Mixed 31.6 28.9

Alto 52.3 39.2 22.9
No synth 39.3 34.8

18.8 19.8Fine-tuning 34.1 32.8
Mixed 29.4 28.7

↑MV2H

Tenor 13.1 13.4 51.9
No synth 14.8 25.3

72.7 68.5Fine-tuning 24.6 33.3
Mixed 33.3 40.6

Alto 12.6 14.8 58.0
No synth 15.5 24.4

73.8 65.1Fine-tuning 30.5 33.3
Mixed 38.2 39.7

of reporting narrower improvement margins due to the better
reference recognition rate of the No synth case as a consequence
of the larger amount of real recordings.

In relation to the particular train policies for this Tc com-
bined scenario, the Mixed method systematically achieves bet-
ter recognition rates than the Fine-tuning one, independently of
the θ case, evaluation metric, or saxophone type. Such a differ-
ence in the performance suggests that the former strategy allows
the model to better exploit the nuances provided by the subset
of real data than the two-stage approach of the latter policy.

Finally, Fig. 2 shows the transcription results of a piece
when training the model with either the entire set of real record-
ings (Tr) or with the combined assortment (Tc) of synthetic el-
ements with θ = 10% of real data. As expected, the set Tr

provides a more accurate transcription (despite overestimating
bar lines, it almost tracks all notes) than Tc (which misses sev-
eral notes and produces an enharmony error).2 However, as
aforementioned, the competitive results obtained in the com-
bined case reinforce the previous insights of a possible synergis-
tic relationship between real and synthetic data in this particular
training approach.

5. Conclusions
This work tackles a gap in the neural end-to-end Audio-to-Score
(A2S) field. We studied and compared different scenarios of
real and synthetic data to provide general insights about the
transcription performance in those cases. For that, we con-
tribute with a novel collection of real-world saxophone record-
ings with their corresponding score-level annotations—which
represents the first assortment of this type specifically devised
for A2S transcription—and pose different experimental scenar-
ios comprising real, synthetic, and blended collections of data.

The obtained results validate the capabilities of the A2S
framework to transcribe real data as the recognition rates match
those observed in the works exclusively relying on synthetic
corpora. Moreover, the use of synthetic train data proves to
be useful for addressing scenarios with real-data scarcity since,
with the adequate policy, it considerably improves the overall
transcription performance.

2Enharmony refers to different note names but same audible pitch
(e.g., B♭ and A#).

Future work seeks to expand the presented assortment by
contemplating other instruments and music textures, such as
polyphony or ensemble music, to provide other challenging sce-
narios from which to extract additional insights. Furthermore,
in light of the results obtained, another promising venue is to
examine adequate data augmentation pipelines to increase the
robustness of the transcription schemes and, hence, narrow the
synthetic-to-real recognition gap.

Figure 2: Transcription examples when training the model with
the Tr complete set of real recordings (left) or the Tc combined
assortment of synthetic elements with θ = 10% of real data
(right). The ground-truth transcription in Kern (center) is pro-
vided, being also rendered as two independent scores for each
recognition case in which the individual errors are highlighted.
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