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Abstract
We have observed significant differences in the high frequency
content of the spectrum between healthy and pathological
voices. Pathologies like larynx cancer, vocal fold lesions, and
patients with larynx or vocal fold removal are examples of this.
This finding invites to use high sampling frequencies in voice
pathology classification systems to benefit from this high fre-
quency information, which has been traditionally ignored. With
a GMM classifier fed with MFCCs and a sampling frquency of
48 kHz we are able to improve AUC almost a 5% compared to a
system using a sampling frequency of 8 kHz and more than 2%
compared to a system using a sampling frequency of 16 kHz.
Index Terms: voice pathology classification, high frequency,
sampling frequency, SVD, AVFAD

1. Introduction
Voice pathology detection is a binary classification problem
with the goal of deciding if the voice uttered by a person is
normal or pathological. Voice pathologies are numerous and
diverse, and diagnosis rely on the subjective criteria of pro-
fessional clinicians. Hence, automatic assessment tools are a
great support to make more accurate and consistent diagnosis
of pathologies.

Nonetheless, voice malfunction is a common problem in
our society and at least 30% of us will suffer it at least once in
his life according to [1]. Moreover, with the establishment of
electronic devices and high-speed internet in most of the popu-
lated areas, such systems can be applied even in remote places
without requiring the physical presence of a doctor. Potential
savings are huge.

Different classification systems have been evaluated for
voice pathology detection but the lack of a common setup
makes it difficult to make fair comparisons [2]. Classifiers like
Gaussian mixture models (GMM) [3], support vector machines
(SVM) [4] and different types of neural networks [5, 6] present
similar accuracies that range from 80% to 95% depending on
the setup. In addition, a lot of investigations have focused on
features that discriminate well between healthy and patholog-
ical voices, and we find a wide range of possibilities like jit-
ter, shimmer, signal-to-noise ratios, Mel-frequency coefficients
(MFCC), and combinations of them [7], to cite a few.

In this work, our main objectives are to share our find-
ings about the utility of high-frequency content for the char-
acterization of voice pathologies and to show how much voice
pathology classification results improve when this information
is used. We haven’t found previous literature paying attention
to this factor and most of the works use sampling frequencies
of 8 kHz or 16 kHz [8]. For example, [9] makes a deep analy-
sis on the influence of MFCCs in voice pathology detection but

the audios are downsampled to 16 kHz. The authors in [10] do
perform an analysis of the influence of each frequency band but
their maximum sampling frequency is 25 kHz, which limits the
maximum analysis frequency to 12.5 kHz. Interestingly, they
find that the most relevant frequency band is the range 1-8 kHz,
but their study is limited to three pathologies, namely vocal fold
cysts, unilateral vocal fold paralysis and vocal fold polyps. In
our work, we find also relevant even higher frequencies.

Even for characterization of certain impairments like laryn-
gectomy [11] or dysphonia [12], the high frequency content has
not been considered. However, we demonstrate that these stan-
dard sampling frequencies may not fully characterize certain
pathologies.

Our work is organized as follows: Section 2 describes the
audio material; in Section 3 we share the observations that mo-
tivated our study; Section 4 presents our classification system
architecture; Section 5 shows the experiments that we have per-
formend and obtained results; and in Section 6 conclusions are
drawn.

2. Data Material
2.1. Saarbrücken Voice Database (SVD)

SVD [13] contains recordings of vowels /a/, /i/ and /u/, and the
phrase in German “Guten Morgen, wie geht es Ihnen?”. The
sampling frequency is 50 kHz. It contains 687 healthy people
and 1356 with pathologies, with a total of 71 pathologies in-
cluding organic, functional and neurological impairments.

In our experiments we use all the pathologies and a 5-fold
strategy following the same partition as in [2]. In this work all
results are obtained using audio from the phrase “Guten Mor-
gen, wie geht es Ihnen?”. Previous work in the literature has
shown that using phrases rather than sustained vowels increases
discrimination between normal and pahtological voices [14].

2.2. Advanced Voice Function Assessment Database (AV-
FAD)

AVFAD [15] contains recordings of vowels /a/, /i/ and /u/, sev-
eral phrases in Portuguese, a read text and a spontaneous speech
recording. The sampling frequency is 48 kHz. It contains
363 healty people and 346 with pathologies, with a total of 26
pathologies including organic, functional and neurological im-
pairments.

As in SVD, we use all pathologies and a 5-fold strategy,
created using the modulus of the speaker id number. In this
case, all our experiments have been done with phrase 5 of the
database, “Sofia saiu cedo da sala”.
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Table 1: Figures with comparison between normal voice and pathological voices from SVD. 1a - Cordectomy; 1b - Frontolaterale
partial laryngectomy; 2a - Laryngeal tumor; 2b - Vocal fold carcinoma; 3a - Vocal fold polyp; 3b - Dysodia.

3. Observations
The main motivation for our work is the observation of wide-
band spectrograms for several pathologies. In Table 1 we com-
pare the average power spectrum for all the normal voices in the
SVD with the average power spectrum for several pathologies
± 1 standard deviation interval. The figures are obtained on the
phrase recording. We have selected the fiive pathologies where
the differences in the higher part of the spectrum are more no-
table. To make the plots, we have used rectangular filter banks
every 500 Hz.

The top 2 figures in the table correspond to two surgical
procedures: cordectomy, removal of one or two vocal folds, and
laryngectomy, removal of part or all of the larynx. In the two
cases the differences with normal voices start around 5 kHz and
the difference remains up to 24 kHz. It is interesting to see
that in laryngectomy, the average curves ± 1 std do not overlap
from around 15 kHz to 22 kHz, frequencies not possible to be
analyzed even for a sampling frequency of 30 kHz.

Figure 2a shows patients with laryngeal tumor. The differ-
ence with normal is significant from 5 kHz up to 24 kHz. In
Figure 2b, with focal fold carcinoma, we see a similar effect,
not as prominent as in the previous case, although from 15 kHz

to 22 kHz the overlap of the ±1 std regions is very small. In
Figure 3a, vocal fold polyp, has a similar pattern to vocal fold
carcinoma.

In Figure 3b we have dysodia, which is included for refer-
ence to compare with a case that doesn’t have a visually differ-
ent spectrogram from the normal class.

One point in common in 2 of the 6 selected pathologies is
that there is an injury in the vocal cords, so, it seems that this
type of damages provoke higher excitement of high frequencies
than normal.

Most of these cases contain differences not only in the high
part of the spectrum, but also in the middle, mainly down to 5
kHz, therefore we don’t expect these pathologies not to be well
classified with lower sampling frequencies but to have a more
robust behaviour or even a boost in accuracy when the higher
sampling frequencies are used.

Out of the scope of this work, although a highly interested
information, is the reason why the high frequencies are altered
compared to normal voices. In the case of lesions in the vocal
cords, one plausible hypothesis is that polyps or other protuber-
ances provoke a perturbartion in the air flow that excites this
wide range of frequencies.
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Figure 1: MFCC computation diagram.

4. System Description
4.1. Features

We use MFCCs. We need to include information of the whole
frequency range in the voice pathology classication task and
MFFCs are features that work on the frequency domain, ef-
ficiently compressing the information in the whole spectrum.
MFCCs have been extensively used in speech technology [16].
The main steps to compute them are depicted in Figure 1.

We first apply a high pass filtering. Then the signal is
framed in chunks of 25 ms every 10 ms. A Hamming window
is applied in each frame. Then, the short time Fourier transform
(STFT) is computed at each frame with as many points as the
next power of two to the number of samples in the frame. The
square of the absolute value of the STFT is computed to get
the power spectrum, and then a Mel filterbank is applied. Next
we apply a log function over the Mel-filtered values and finally
a discrete Fourier transform (DCT) is applied, which returns a
pre-selected number of coeffcientes. Finally, we also obtain the
first and second derivatives of the MFCCs.

4.2. Classifier

We use a GMM classifier [17]. The GMM classifier learns two
generative models: one for the normal class and one for the
pathological class, and at inference time the score to make de-
cisions is the difference between the logarithm of the score ob-
tained by the normal model minus the logarithm of the score
obtained by the pathological model.

The goal of each GMM model is to learn a frequency rep-
resentation (captured by the mean of each Gaussian) for each
part of the evaluated sentence, and depending on the length of
the sentence we need more or less Gaussian units.

This classifier has shown state-of-the-art performance dur-
ing the last decade [8]. Other typical choices are SVMs or neu-
ral networks. It is interesting to note that the advent of deep
neural networks has not shown convincing improvements yet in
voice pathology classification tasks, probably due to the lack
of huge databases, as it has happened in other related areas
like speech or image recognition where the size of available
databases is light-years larger. Only recently, some approaches
have tried to make benefit of self-supervised models pre-trained
with huge amounts of data with succes [18].

In any case, since our objective is not to obtain the best
possible results, but to share our findings about the importance
of high-frequency content for voice pathology detection, the
GMM classifier is better suited for our problem than the other
choices because it makes easier to analyse what the system is
learning.

4.3. Tunable Parameters

To avoid overfitting in our experiments, we use a held-oput
dataset (AVFAD) to tune the system parameters. The tunable
parameters are:
• Number of Mel filter banks: to control de resolution of the

spectrum.
• Number of MFCC coefficients: to control the compression

rate of the spectrum information.
• Number of Gaussians: to control de resolution of the parts of

the sentence where a different spectrum is computed.

5. Experiments
5.1. Metrics

To report results, we focus on uncalibrated metrics like area un-
der the cureve (AUC) and equal error rate (EER) because we
have not optimized the threshold of the system to make deci-
sions. However, to enable comparisons with other works in the
literature, we use a threshold of 0 to make decisions and report
unweighted avearage recall (UAR).

We also compute the 95% confidence interval on the mean
of the reported metrics computed over the 5 folds.

5.2. System Development on AVFAD

AVFAD database is used as development data to tune the system
parameters and select the best configuration for each sampling
frequency. We use AUC as optimization metric. In Figure 2
we show the 5-fold average AUC for a sweep of the tunable
parameters as described in Section 4.3 (number of Mel filters,
number of MFCC coefficients and number of Gaussians). In
Table 2 we show the optimal configuration for each sampling
frequency with the corresponding obtained AUC.

Table 2: Optimal configurations and results in AVFAD

Sampling Freq. 8 kHz 16 kHz 22 kHz 48 kHz

#filters 40 40 20 120
#MFCC coefficients 30 30 30 25

#Gaussians 16 16 16 16

AUC (%) 89.32 89.91 90.20 90.23

In Figure 2 we can observe several things:
• Best results are obtained with a sampling frequency of 48

kHz in most points.
• The difference between 48 kHz and the rest is largest for 3

Gaussians and is reduced as we increase the number of Gaus-
sians. This indicates that for simpler systems, the high fre-
quency information is more relevant to differentiate between
normal and pathological voices, and as we introduce more
parameters we are able to include more information from the
low-frequency band to improve the differentiation between
the two classes.

• For the 48 kHz system, the addition of more Gaussians does
not offer a big improvement in terms of AUC. This indicates
that by using high frequency content we do not need to com-
pare a big diversity of frequency patterns (or in other words,
only a few modes in the data distribution are relevant for the
classification task).

• Higher number of MFCC coefficients help.
• For 8 kHz and 16 kHz the optimal number of filter is 40 and

for 48 kHz it is 120. This looks reasonable since this way the
frequency band covered by each filter is similar in all cases.
For the lower sampling frequency 120 filters may provoke
overfitting. For 22 kHz we see that the optimal is 20 filters
but the result for 120 filters is similar.
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Figure 2: AVFAD average AUC results for sampling frequencies of 8 kHz (green-thin-dotted-triangle), 16 kHz (red-thin-continuous-
star), 22 kHz (blue-thick-dashed-diamond), 48 kHz (black-thick-continuous-square). In the x-axis we show a sweep for number of Mel
filters (20, 40, 60, 80, 100), number of MFCC coefficients (10, 15, 20, 25, 30) and number of Gaussians (8, 16, 32). Red circles indicate
maximum value of each line.

5.3. Evaluation on SVD

In Table 3 we compare the results for SVD using the best con-
figuration obtained with AVFAD database for the four sampling
frequencies studied.

Table 3: Results for SVD using AVFAD’s best configuration

Sampling Freq. 8 kHz 16 kHz 22 kHz 48 kHz

AUC avg (%) 84.38 86.70 86.99 88.52
CI(95%) ±2.82 ±2.73 ±2.09 ±2.15

EER avg (%) 23.17 20.95 21.43 19.33
CI(95%) ±2.73 ±2.72 ±2.34 ±1.67

UAR avg (%) 76.29 78.63 78.83 80.52
CI(95%) ±2.17 ±2.73 ±1.71 ±1.60

We can see a robust and progressive improvement of re-
sults in all metrics from 8 kHz to 48 kHz, with some overlaps
in the confidence intervals. Focusing on AUC, we see relative
improvements with 48 kHz of 4.90% over 8 kHz, 2.10% over
16 kHz, and 1.76% over 22 kHz. We also see that the difference
between 22 kHz and 16 kHz is very small.

6. Conclusions
We have based our work in the observation of the wide-band
power spectrums of pathological voices, which indicates that
high frequency content can be a potential good information to
be used in voice pathological classifiers. We have seen that cer-
tain pathologies like cordectomy, laryngectomy, and several le-
sions in the vocal cords and larynx, including larynx cancer,
have a clear distinct spectrum pattern than normal voices.

The hypothesis has been tested on SVD database using a
GMM architecture tuned on AVFAD database. The results show
that by using a sampling frequency of 48 kHz we can obtain

an average relative improvement of 2.10% over a sampling fre-
quency of 16 kHz and 4.90% over 8 kHz.

In future work we plan to study if the high frequency infor-
mation can also help us to better distinguish across pathologies
in a multiclass classification problem. We think that voice clas-
sification can benefit from hand-crafted setups and continuing
this analysis on other data and other part of speech like sus-
tained vowels will help us to improve the classification rates.
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