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Abstract
Spoken language understanding (SLU) has achieved great suc-
cess in high-resource languages, but it still remains challeng-
ing in the low-resource languages due to the scarcity of labeled
training data. Hence, there is an increasing interest in zero-shot
cross-lingual SLU. SLU typically has two subtasks, including
intent detection and slot filling. Slots and intent in the same
utterance are correlated, thus it is beneficial to achieve mutual
guidance between them. In this paper, we propose a novel cross-
lingual SLU framework termed DiffSLU, which leverages pow-
erful diffusion model to enhance the mutual guidance. In addi-
tion, we also utilize knowledge distillation to facilitate knowl-
edge transfer. Experimental results demonstrate that our Diff-
SLU can improve the performance compared with the strong
baselines and achieves the new state-of-the-art performance on
MultiATIS++ dataset, obtaining a relative improvement of 3.1%
over the previous best model in overall accuracy.
Index Terms: spoken language understanding, zero-shot, dif-
fusion model, knowledge distillation

1. Introduction
Task-oriented dialogue systems rely on spoken language un-
derstanding (SLU) [1, 2, 3, 4], which aims to extract seman-
tic components from queries. Typically, SLU comprises of two
subtasks, including intent detection and slot filling [5, 6]. The
emergence of deep neural network techniques has led to remark-
able accomplishments in the field of SLU. Nonetheless, most of
them demand extensive labeled training data, which restricts the
performance on the languages with scarce or no training data,
thereby limiting their scalability. To tackle this issue, zero-shot
cross-lingual SLU [7, 8] has garnered lots of attention as it uses
labeled data in high-resource languages to transfer knowledge
from trained models to low-resource target languages.

Recently, numerous studies are carried out to achieve zero-
shot cross-lingual SLU, including the utilization of Multilingual
BERT (mBERT) [9], a contextual pre-trained model trained on a
corpus of multiple languages, which shows significant progress
in achieving zero-shot cross-lingual SLU. In a code-switched
setting, [10] expands on the notion by aligning the source lan-
guage with several target languages, which simply utilizes bilin-
gual dictionaries to randomly select some words in the utterance
to be replaced by the translation of the words in other languages.
[7] and [8] apply contrastive learning to achieve explicit align-
ment to further improve the performance. However, most of the
previous works neglect to implement the mutual guidance be-
tween intent and slots, which is beneficial to the performance of
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the SLU model. In this paper, we propose DiffSLU to leverage
powerful diffusion model to achieve the mutual guidance.

Continuous diffusion models are first successfully applied
in image generation [11, 12, 13]. Recently, diffusion models are
applied to sequence learning and controllable text generation.
Diffusion-LM [14] is the first diffusion model for sequence gen-
erate, which demonstrates the superiority of diffusion models in
generating sequences. The improvements to diffusion-based se-
quence generative models can be broadly categorized into three
lines. The first line introduces some novel components, such as
the partial diffusion process proposed by [15], self-conditioning
techniques introduced by [16], and the adaptive noise schedule
proposed by [17]. The second line applies diffusion models to
the latent space of pre-trained language models [18]. The third
line attempts to combine conventional practices in discrete to-
ken prediction with diffusion models. For instance, [19, 20, 21]
incorporate the cross-entropy objectives in training.

DiffSLU consists of two components with the same archi-
tecture. The training process includes forward process with par-
tial noising and reverse process with conditional denoising [15].
Specifically, we first apply code-switching method [10] to gen-
erate multi-lingual code-switched utterance based on the origi-
nal utterance. We concatenate the representation of the original
utterance, the one-hot encoding of the slot label, and the one-
hot encoding of the intent label as the input of the first diffu-
sion model. Similarly, we concatenate the representation of the
code-switched utterance and the two one-hot encoding as the
input of the second diffusion model. Through concatenating the
two one-hot encoding, our method achieves the mutual guid-
ance between these two subtasks. Following [15], we only im-
pose noising on the concatenation of the two one-hot encoding.
In addition, we apply knowledge distillation in the reverse pro-
cess to transfer knowledge from the first diffusion model to the
second diffusion model, which could further improve the per-
formance. In the inference process, only the second diffusion
model is utilized. Experiment results on the public benchmark
dataset MultiATIS++ [22] show that DiffSLU significantly out-
performs the previous best zero-shot cross-lingual SLU models
and analysis further verifies the advantages of our method.

In summary, the contributions of this paper are as follows:

• To the best of our knowledge, we are the first to apply
diffusion models for zero-shot cross-lingual SLU.

• We apply knowledge distillation to further improve the
performance of the model.

• Experiments show that DiffSLU achieves a new state-of-
the-art performance, obtaining an improvement of 3.1%
over the previous best model in average overall accuracy.
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Figure 1: The overview of our DiffSLU. Two models with the same architecture are trained on the original utterance and code-switched
utterance, respectively. Jensen-Shannon Divergence (JSD) is applied to transfer knowledge.

2. Method
In this section, we first describe the background (§2.1) of cross-
lingual SLU. Then we introduce the main architecture of Diff-
SLU. Finally we introduce the overall training objective (§2.3).
The overview of our method is shown in Figure 1.

2.1. Background

Intent detection and slot filling are two subtasks of SLU. Given
an input utterance x = (x1, x2, . . . , xn), where n is the length
of x. Intent detection is a classification task which predicts the
intent oI . Slot filling is a sequence labeling task which maps
each utterance x into a slot sequence oS =

(
oS1 , o

S
2 , . . . , o

S
n

)
.

Training a single model that can handle both tasks of intent de-
tection and slot filling is a common practice as they are closely
interconnected. Following previous work [23], the formalism is
formulated as follows:

(oI ,oS) = f(x) (1)

where f is the trained model.
The zero-shot cross-lingual SLU task involves training an

SLU model in a source language and then adapting it directly to
target languages without additional training. Specifically, given
each instance xtgt in the target language, the predicted intent
and slot can be directly obtained by the SLU model f which is
trained on the source language:

(
oI
tgt,o

S
tgt

)
= f (xtgt) (2)

where tgt denotes the target language.

2.2. Main Architecture

Inspired by the accomplishment of pre-trained models in other
tasks [24, 25], we follow [7] to obtain the representation H of
the utterance x by using mBERT [9] model:

H = (hCLS,h1, . . . ,hn,hSEP) (3)

where [CLS] denotes the special symbol for representing the
whole sequence, and [SEP] can be utilized for separating non-
consecutive token sequences.

For intent detection, we input the utterance representation
hCLS to a classification layer to obtain the predicted intent:

oI = softmax
(
W IhCLS + bI

)
(4)

where W I and bI denote the trainable matrices.
For slot filling, we follow [26] to utilize the representation

of the first sub-token as the whole word representation and use
the hidden state to predict each slot:

oS
t = softmax (W sht + bs) (5)

where ht denotes the representation of the first sub-token of
word xt, W s and bs denote the trainable matrices.

We employ code-switching [10] to leverage the bilingual
dictionaries [27] to generate the multi-lingual code-switched
utterance x′. We denote the representation of the original ut-
terance x as Ho and the representation of the code-switched
utterance x′ as Hc. Motivated by [15], we concatenate the rep-
resentation Ho, the one-hot encoding ŷS of the slot label, and
the one-hot encoding ŷI of the intent label as the input of the
first diffusion model. Similarly, we concatenate the representa-
tion Hc and the two one-hot encoding ŷS and ŷI as the input of
the second diffusion model. In the forward process, we only im-
pose noising on the concatenation ŷ of ŷS and ŷI . We denote
the concatenation of Ho and ŷ as E1 and the concatenation of
Hc and ŷ as E2. We pair-wisely transform E1 and E2 into con-
tinuous space z10 and z20. The loss Ldif of the diffusion model
is formulated as follows:

Ldif =
T∑

t=2

||z10 − f1
θ (zt, t)||2 +

T∑

t=2

||z20 − f2
θ (zt, t)||2

+ ||E1 − f1
θ (z1, 1)||2 + ||E2 − f2

θ (z1, 1)||2
(6)

where f1
θ (zt, t) is denoted the fractions of recovered z10 corre-

sponding to ŷ and f2
θ (zt, t) is denoted the fractions of recov-

ered z20 corresponding to ŷ.
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Besides, we also apply knowledge distillation to transfer the
knowledge and enhance the robustness to the label noise [28].
We randomly choose a time t and utilize the Jensen-Shannon
Divergence (JSD) between f1

θ (zt, t) of the first model and
f2
θ (zt, t) of the seconde model:

Lkd = JSD(f1
θ (zt, t), f

2
θ (zt, t)) (7)

2.3. Training Objective

Following previous work [23], the intent detection objective LI

and the slot filling objective LS are formulated as follows:

LI ≜ −
nI∑

i=1

ŷI
i log

(
oI
i

)
(8)

LS ≜ −
n∑

j=1

nS∑

i=1

ŷi,S
j log

(
oi,S
j

)
(9)

where ŷI
i is the gold intent label, ŷi,S

j is the gold slot label
for jth token, nI is the number of intent labels, and nS is the
number of slot labels.

The final training objective is as follow:

L = αLI + βLS + λLdif + γLkd (10)

where α, β, λ, γ are the hyper-parameters.

3. Experiments
3.1. Datasets and Metrics

All the experiments are conducted on the cross-lingual SLU
benchmark dataset, MultiATIS++1[22], which contains 18 in-
tents and 84 slots for each language. Human-translated data
for six languages including Spanish (es), German (de), Chinese
(zh), Japanese (ja), Portuguese (pt), French (fr) are added to
Multilingual ATIS which has Hindi (hi) and Turkish (tr). The
statistics of MultiATIS++ dataset are shown in Table 1.

Table 1: Statistics of MultiATIS++

Language Utterances Intent Slot
train valid test types types

hi 1440 160 893 17 75
tr 578 60 715 17 71
others 4488 490 893 18 84

Following the previous works [7, 8, 23], we utilize accu-
racy to evaluate the intent prediction performance, F1 score to
evaluate the slot filling performance, and overall accuracy to
evaluate the sentence-level semantic frame parsing. Overall ac-
curacy represents whether all metrics including intent and slots
in the utterance are correctly predicted.

3.2. Implementation Details

The mBERT model we utilized has N = 12 attention heads
and M = 12 transformer blocks. Following previous work [7],
we select the best hyperparameters by searching a combination
of batch size, learning rate with the following ranges: learning
rate {2× 10−7, 5× 10−7, 1× 10−6, 2× 10−6, 5× 10−6, 6×
10−6, 5 × 10−5, 5 × 10−4} and batch size {4, 8, 16, 32}. α,

1https://github.com/amazon-science/multiatis

β, λ, γ are set to 0.9, 0.1, 0.8 and 0.2 in Eq.10, respectively.
We use Adam optimizer [33] with β1 = 0.9, β2 = 0.98 to
optimize the parameters. For all the experiments, we select the
model that performs the best on the dev set in terms of overall
accuracy and evaluate it on the test set. The training process
will early-stop if the loss on the dev set did not decrease for 5
epochs. All experiments are conducted at an Nvidia Tesla-V100
GPU. The training process lasts several hours.

3.3. Baselines

We compare our model to the following baselines:
• mBERT: mBERT2 follows the same model architecture

and training procedure as BERT [9], but instead of train-
ing only on monolingual English data, it is trained on the
Wikipedia pages of 104 languages with a shared word
piece vocabulary, allowing the model to share embed-
dings across languages;

• AR-S2S-PTR: a unified sequence-to-sequence models
with the pointer generator network proposed by [31] for
zero-shot cross-lingual SLU;

• IT-S2S-PTR: a non-autoregressive model based on the
insertion transformer proposed by [32], which speeds up
the decoding progress of zero-shot cross-lingual SLU;

• Ensemble-Net: [30] proposes an effective zero-shot
cross-lingual SLU model, whose predictions are the ma-
jority voting results of 8 independent models, each sepa-
rately trained on a single source language;

• ZSJoint: [29] proposes a zero-shot SLU model, which
is trained on the en training set and directly applied to
the test sets of target languages.

• CoSDA: [10] proposes a data augmentation framework to
generate multi-lingual code-switching data to fine-tune
mBERT, which encourages the model to align represen-
tations from the source and multiple target languages.

• GL-CLEF: [7] introduces a contrastive learning frame-
work to explicitly align representations across languages
for zero-shot cross-lingual SLU.

• LAJ-MCL: [8] proposes a multi-level contrastive learn-
ing framework for zero-shot cross-lingual SLU.

3.4. Main Results

The performance comparison of DiffSLU and baselines are
shown in Table 2, from which we have the following obser-
vations: (1) The models which applies code-switching method
including CoSDA, GL-CLEF and LAJ-MCL outperform the
models which do not use this method. This is because code-
switching produces an implicit alignment, thereby aligning the
representations to some degree. (2) Moreover, DiffSLU further
improves the performance and obtains a relative improvement
of 3.1% over the previous best model in terms of average over-
all accuracy. The reason is that our method enhance the mutual
guidance between intent and slots, which is helpful to further
improve the performance of the model.

3.5. Model Analysis

3.5.1. Effect of Diffusion Module
We remove the diffusion module and refer it to w/o diffusion in
Table 3 to verify the effectiveness. It is obvious that after we re-
move the diffusion module, the intent accuracy of MixATIS++
dataset drops by 5.58%. Moreover, the overall accuracy also

2https://github.com/google-research/bert/
blob/master/multilingual.md
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Table 2: Experiment results on the MultiATIS++ dataset. ‘–’ denotes missing results from the published work.

Intent (Acc) en de es fr hi ja pt tr zh AVG

mBERT [22] - 95.27 96.35 95.92 80.96 79.42 94.96 69.59 86.27 -
mBERT [9] 98.54 95.40 96.30 94.31 82.41 76.18 94.95 75.10 82.53 88.42
ZSJoint [29] 98.54 90.48 93.28 94.51 77.15 76.59 94.62 73.29 84.55 87.00
Ensemble-Net [30] 90.26 92.50 96.64 95.18 77.88 77.04 95.30 75.04 84.99 87.20
CoSDA [10] 95.74 94.06 92.29 77.04 82.75 73.25 93.05 80.42 78.95 87.32
GL-CLEF [7] 98.77 97.53 97.05 97.72 86.00 82.84 96.08 83.92 87.68 91.95
LAJ-MCL [8] 98.77 98.10 98.10 98.77 84.54 81.86 97.09 85.45 89.03 92.41

DiffSLU 98.86 98.17 98.21 98.93 86.66 82.65 97.21 85.98 89.46 92.90

Slot (F1) en de es fr hi ja pt tr zh AVG

Ensemble-Net [30] 85.05 82.75 77.56 76.19 14.14 9.44 74.00 45.63 37.29 55.78
mBERT [22] - 82.61 74.98 75.71 31.21 35.75 74.05 23.75 62.27 -
mBERT [9] 95.11 80.11 78.22 82.25 26.71 25.40 72.37 41.49 53.22 61.66
ZSJoint [29] 95.20 74.79 76.52 74.25 52.73 70.10 72.56 29.66 66.91 68.08
CoSDA [10] 92.29 81.37 76.94 79.36 64.06 66.62 75.05 48.77 77.32 73.47
GL-CLEF [7] 95.39 86.30 85.22 84.31 70.34 73.12 81.83 65.85 77.61 80.00
LAJ-MCL[8] 96.02 86.59 83.03 82.11 61.04 68.52 81.49 65.20 82.00 78.23

DiffSLU 96.16 86.72 85.48 84.26 73.04 74.12 82.52 68.14 83.12 81.51

Overall (Acc) en de es fr hi ja pt tr zh AVG

AR-S2S-PTR [31] 86.83 34.00 40.72 17.22 7.45 10.04 33.38 – 23.74 -
IT-S2S-PTR [32] 87.23 39.46 50.06 46.78 11.42 12.60 39.30 – 28.72 -
mBERT [9] 87.12 52.69 52.02 37.29 4.92 7.11 43.49 4.33 18.58 36.29
ZSJoint [29] 87.23 41.43 44.46 43.67 16.01 33.59 43.90 1.12 30.80 38.02
CoSDA [10] 77.04 57.06 46.62 50.06 26.20 28.89 48.77 15.24 46.36 44.03
GL-CLEF [7] 88.02 66.03 59.53 57.02 34.83 41.42 60.43 28.95 50.62 54.09
LAJ-MCL[8] 89.81 67.75 59.13 57.56 23.29 29.34 61.93 28.95 54.76 52.50

DiffSLU 90.06 68.02 59.84 58.08 35.12 43.06 63.04 29.32 55.08 55.74

Table 3: Ablation results on the MultiATIS++ dataset.

Models Intent Slot Overall

DiffSLU 92.90 81.51 55.74

w/o diffusion 87.32(↓5.58) 73.47(↓8.04) 44.03(↓11.71)
More Parameters 88.24(↓4.66) 74.86(↓6.65) 45.12(↓10.62)
w/o distillation 92.53(↓0.37) 81.02(↓0.49) 55.16(↓0.58)

drops by 11.71%. These results demonstrate the importance of
the diffusion module in our model, which achieves the mutual
guidance between intent and slots.

3.5.2. Effect of More Parameters
Following previous works [2, 3], to verify whether the increased
parameters of DiffSLU lead to the higher performance, we add
an additional LSTM layer after the last layer of mBERT and re-
fer it to More Parameters. The results in Table 3 show that our
method outperforms mBERT with more parameters in intent ac-
curacy, slot F1 and overall accuracy by 4.66%, 6.65%, 10.62%,
respectively. These results demonstrate that the improvement of
our method indeed comes from the diffusion module and knowl-
edge distillation rather than the involved parameters.

3.5.3. Effect of Knowledge Distillation
To demonstrate the effectiveness of knowledge distillation, we
remove it and refer it to w/o CL and the results are shown in

Table 3. We can clearly observe that knowledge distillation is
beneficial in improving the performance of the model, which
plays a role in transferring knowledge from the model trained
on the utterance in origin utterance to the model trained on the
code-switched utterance. By applying knowledge distillation to
facilitate the knowledge transfer between different languages,
the model can predict the intent and slots more accurately.

4. Conclusions
In this paper, we propose a novel framework DiffSLU based on
diffusion model and knowledge distillation for zero-shot cross-
lingual spoken language understanding (SLU), which achieves
the mutual guidance between intent and slots via the diffu-
sion module. Besides, we apply knowledge distillation to fur-
ther transfer knowledge. Experiments on MultiATIS++ dataset
show that DiffSLU achieve a new state-of-the-art performance.
Model analysis demonstrates that DiffSLU successfully trans-
fers knowledge from source languages to target languages. In
the future, we will explore the effectiveness of our method in
other cross-lingual tasks to improve the performance.
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