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Abstract
In spatial-audio enabled systems, evaluating the quality of spa-
tialization is an essential process. This paper proposes a new
objective metric to measure the spatialization quality (SQ) be-
tween any pair of binaural signals while being agnostic to speech
content and signal duration. We formulate SQ as a metric learn-
ing problem and compute deep-feature distance on embeddings
learned using triplet loss and multi-task learning with direction-
of-arrival and binaural speech synthesis as auxiliary tasks. We
show the robustness of our model on localization in (un)seen
contexts, monotonicity with increasing angular distance, content
in-variance and retrieval performance. Experiments show that
our metric correlates well with publicly available subjective rat-
ings, and it yields improvements when used as a differentiable
loss in a binaural speech enhancement system.

Index Terms: spatial audio quality, binaural localization,
perceptual similarity, differentiable metric

1. Introduction
Many applications that (re)produce audio signals require evalu-
ating audio quality. To date, human judgement via listening tests
conducted in a controlled environment, also known as subjective
evaluations, is the most reliable method for assessing quality,
e.g., MUSHRA [1]. Nonetheless, these tests are time-consuming
and expensive to conduct. In general, they cannot be easily car-
ried out at system development stages, therefore preventing us
from evaluating novel research ideas and frameworks quickly.
To address this challenge, numerous computational tools that are
more accessible and practical have been developed in the last
few decades. These methods, also known as objective metrics,
are typically developed for assessing a specific audio attribute or
application domain in mind [2, 3].

In the domain of spatial audio processing, evaluating audio
quality remains an open and challenging problem because one
must assess quality across multiple attributes [4], including
perceptual audio quality (PAQ) and spatialization quality (SQ).
PAQ refers to measuring audio material distortion and artifacts
affecting a specific signal, e.g., speech quality, intelligibility,
etc. On the other hand, SQ measures how accurately individual
sound sources are positioned in a virtual space to be accurately
localized in the rendered audio, e.g., when listening over
headphones [5], over loudspeaker systems [6]. In this paper,
however, we focus on measuring the SQ of binaural signals.

The earliest research on SQ employs human binaural
hearing-inspired sound source localization models as metrics
[4, 7]. These models rely heavily on signal processing pipelines
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and carefully engineered design choices exploiting in-domain
knowledge of binaural hearing and psycho-acoustics [8, 9]. Sev-
eral other methods proposed extending the standard monau-
ral audio perceptual quality metrics such as PEAQ [10] and
POLQA [11] as SQ metrics [12–15]. The work in [14, 16]
proposed to extend PEAQ to multiple channels by adding bin-
aural hearing models. Similarly, the work in [13] proposes
to incorporate known binaural auditory cues [17] such as In-
teraural Level and Time Differences (ILD,ITD) and Interaural
Cross-Correlation (IACC), which can be extracted from the left
and right channel of binaural signals. Binaural cues preserve
some information about SQ; however, in most of these methods,
different auditory models were used as monaural or binaural
cues, and thus their interdependence and interaction is not well
modeled. Additionally, the majority of these methods are not
versatile [13, 18, 19]. They require either clean reference sig-
nals (i.e. full-reference) or signals with identical content (i.e.
matched-reference) to compare with, and thus cannot be used
when paired clean reference is unavailable. Furthermore, they
presume that test signals are created in relation to the reference,
i.e. the two signals are time-aligned and of equal length, which
may not always be the case during testing.

More recently, machine learning has provided robust, rapidly
re-trainable, and easily expandable solutions that can be used
in many other spatial audio-related problems. The work in
DPLM [18] proposed a full-reference spatialization metric that
evaluates the similarity of binaural signals based on source
localization. This work uses a pre-trained Direction-of-arrival
(DoA) model and computes deep-feature distances between the
outputs of intermediate layers. Similarly, SAQAM proposed
in [20] jointly assesses PAQ and SQ for non-matching reference
signals; it combines these two tasks using a multi-task learning
framework [21] to leverage the useful information contained
in related tasks and improve generalization performance. Note
that both DPLM and SAQAM use pre-trained DoA models with
coarsely discretized azimuth and elevation directions (e.g., 10◦)
as classification/regression targets. It is unclear whether the DoA
models provide reliable localization estimates. Even though the
metrics are differentiable and do not require a clean reference or
time-aligned signals, they only work on signals with a sampling
rate of 16kHz; limiting their utility as loss functions in high-
fidelity audio tasks that use high sampling rates, e.g., 48 kHz.

To tackle some of the aforementioned challenges and
drawbacks, we introduce a novel metric to evaluate SQ of
binaural speech signals and call it SQM-BS (Spatialization
Quality Metric for Binaural Speech). Inspired from work
in [18, 20], we formulate the quality metric as a deep metric
learning (DML) problem and compute similarity on embedding
vectors extracted from 2D direction-of-arrival (DoA) estimation
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(a) (b) (c) (d)
Figure 1: Details of the SQM-BS. (a) Network architecture, (b) The feature extraction block, (c) The temporal aggregation blocks, (d)
Training framework with triplet loss and two additional tasks including Sound source localization (SSL) and Binaural Speech Synthesis
embeddings. Note that blocks connected through dotted lines share weights.

model. We followed a triplet loss architecture and trained
the DoA together with a recently proposed binaural speech
synthesis model [22] in a multi-task learning setting. This
allows us to learn not only robust embeddings but also content-
invariant representations that make our model more versatile.
Consequently, we neither require full-reference nor matched-
reference signals. The use of DML gives us the flexibility to
map audio to an embedding vector which can be computed
once for a static sound source or on a frame-by-frame basis
for a moving source. As a result, our model does not require
time-aligned signals. Moreover, in order to make our model
robust to echoic conditions, we augmented our speech-based
training data with realistic room reverb and noise data. We
evaluate our formulation using a number of multi-task learning
strategies and compare different models in terms of localization
errors in (un)seen contexts, monotonicity with increasing angular
distance, content in-variance, retrieval performance, correlation
to subjective ratings across four tasks, as well as on a newly
collected 2AFC (2-alternative forced choice) dataset. Lastly,
since our model is differentiable, it can be used as a loss function
to train other tasks. We showed that training an existing binaural
speech enhancement system with our metric yields significant
improvements.

2. The SQM-BS Framework
The SQM-BS network architecture and training framework are
shown in Figure 1. The network takes a binaural signal (left
and right channels) and its corresponding mono recording as
inputs. First, the binaural-mono pair from a test recording and
its corresponding reference recording are separately fed into the
network. The output of the last layer is calculated and referred
to as feature map. Following that, spatialization quality metrics
are computed based on similarities between the feature maps of
the test recording and that of the reference recording.

Let xA, xB and xc denotes test recordings; each contain-
ing binaural-mono pair. Let d(·, ·) denote the similarity dis-
tance function calculated by SQM-BS. It has the following
properties: (1) Non-Negative: d(xA,xB) ≥ 0; (2) Mono-
tonic: if d(xA,xB) ≥ d(xC ,xB), then |L(xC)− L(xB)| ≤
|L(xA)− L(xB)|, where L denotes the sound source location;
(3) Indiscernibility of Identicals: d(xA,xA) has very small
(close to zero) scores; and (4) In-variant to content: d(xA,xB)
does not depend on speech content in xA or xB . The first two
properties could be trivially achieved by design. To effectively
model the last two, we devise triplet learning and multi-task
learning approach. As an outcome, we created an embedding
space in which feature maps are content in-variate representa-
tions of the spatialization property of binaural signals. Details
are sequentially presented in the following sections.

2.1. Triplet Learning
Recently, triplet learning has attracted increasing attention as a
popular deep metric learning (DML) method and has shown
considerable potential in constructing task-specific distance

metrics from (weakly-) supervised data, as it can help models
learn a measure of distance by the notion of similarity and
dissimilarity. We define triplets as a set T = {ti}Ni=1 where a
triplet ti = {xi

a,x
i
p,x

i
n} contains xa as the anchor sample, xp

as the positive sample, and xn as the negative sample. We define
triplet loss [23] as:
L(t) = max{0, d(f(xa), f(xp))−d(f(xa), f(xn))+ δ}, (1)

where f is the function approximated by the model weights, δ is
a margin value to prevent trivial solutions, and d(f(x1), f(x2))
is the cosine similarity between the embeddings of the two input
recordings (x1 and x2). Note that, in our case, we design triplets
such that the anchor and positive samples have closer localization
than the anchor and negative.

2.2. Multi-task learning (MTL)
MTL has been shown to be useful in learning robust and
generalizable representations in a variety of speech applications
[24]. It leverages useful information contained in multiple related
tasks to help improve the generalization performance of each
task. With this in mind, we introduce two new tasks to enforce
the proposed model to learn content-invariant but sound source
location-dependent feature maps.

SSL: We trained a sound source-localization (SSL) model that
predicts the direction of arrival (DOA) of a given binaural audio
recording. We used the SSL model as used in [18, 20]. This task
takes the feature maps from a pre-trained SQM-BS model and
learns a projectible mapping to a discrete space of sound source
locations.

Binaural-Decoder: This task makes use of pre-trained embed-
dings from a pre-existing binaural speech synthesis [22]. We
learn a projection from our model feature maps to the binaural
synthesis module’s adapter block outputs. The adapter module
take view vectors (aka 6 DoF coordinates) as input. By opti-
mizing the feature maps to match the outputs of the adaptor,
we ensure that our model is independent of speech content but
dependent on view (position) information.

Combined: This model is our proposed full SQM-BS metric
model. It combines the previous two tasks together with the
triplet learning framework.

2.3. Architecture
The network architecture of our model is shown in Figure 1. It
consists of three components: feature-extraction block, temporal
aggregation block and task-specific heads. The feature-extraction
block (Figure 1(b)) is a 1D ResNet-styled architecture without
stride to preserve information and maintain temporal consistency.
The temporal aggregation block (Figure 1(c)), contains 2 bi-
directional LSTM layers that output a feature map of size 64 for
each time frame. The architectures for task-specific heads are
task-dependent. For the task of triplet learning, the temporally
aggregated feature maps are transformed through a linear layer
to output an embedding vector of dimension 16; the triplet loss
is then applied to this embedding.

5427



2.4. Loss functions
For the triplet learning formulation, we use cosine distance as a
distance function with a margin δ (see Equation 1). For the SSL
subtask, we use the label-smoothed Cross-Entropy (CE) loss as
used in [18, 20]. For the binaural synthesis subtask, we used the
cosine distance between the output of our model and the target
binaural synthesis embedding as a loss function.

2.5. SQM-BS as a metric loss
We use deep feature distances as a proxy similarity metric. These
have been found to be robust to imperceptible differences, and
correlate well with human perception of similarity judgments [18,
20, 25]. Given a L-layered network, the output of lth hidden
layer is fl(x) ∈ RTl×Cl , where Tl and Cl are the time resolution
and number of channels respectively. The distance between two
audio recordings is then given by:

D(x1,x2) =
∑

l

1

TlCl
||fl(x1)− fl(x2)||1. (2)

3. Experimental Setup
3.1. Datasets and Training
Since there is no publicly available binaural audio dataset with
paired mono and source location data required to train and
validate our proposed framework, we collected a novel binaural
audio dataset. We re-recorded 42 hours of speech from the
VCTK corpus [26] using 108 3Dio binaural microphones placed
in a non-anechoic room. 96 microphones were placed at various
height levels around a circular recording area, and the remaining
12 microphones were placed at the center. We played speech
signals from VCTK corpus over a small hand-held loudspeaker
which was carried by a person walking around the room. The
3D position and orientation of the loudspeaker as well as the
binaural microphones were tracked using Optitrack system. With
this setup, we recorded 42 hours of binaural audio data, covering
a distance of 4.6m horizontally and 2.4m vertically. The signal
sent to the loudspeaker is considered as the mono source. In
total, we have collected 42 × 108 = 4526 hours of binaural
audio data. Let D1 denotes this dataset.

Our model takes the raw binaural signals and their mono
counterpart as inputs. We found that adding the mono signal
helps the model to perform better (see Section 4.3 for compar-
isons with binaural-only input). For the triplet learning, the
inputs to be model (xa,xp,xn) are created by sampling differ-
ent recordings from D1. For training, we use the Adam optimizer
with a learning rate of 10−4 and batch size of 32. The label-
smoothing parameter α is 0.25. The margin δ is set to 1.

3.2. Evaluation and Baselines
We compared our model with four existing methods. BAMQ [13]
is a binaural audio quality metric that estimates quality from
binaural cues such as ILD, ITD, and IACC. GPSM+BMFD [19]
combines monaural and binaural psychoacoustic models in a
multi-stage processing step to estimate quality. DPLM [18] and
SAQAM [20] are deep learning-based quality metrics.

To benchmark our model on unseen data, we augment D1

dataset using a pool of 11 publicly available Binaural Room
Impulse Response (BRIR) databases including Huddersfield [27],
Ilmenau [28], and IoSR [29]. We used speech recordings from
the TIMIT [30] dataset as the source for anechoic recordings,
and pyroomacoustics toolkit [31] to synthesize the binaural
recordings. This dataset is denoted as D2.

Additionally, we benchmark the performance of the SSL
model used in our framework by comparing it with that of
DPLM [18] and SAQAM [20]. We compared the generalization
capabilities of two variants across unseen datasets. The first
approach is a classification model in which the output/target is
discretized into equally spaced azimuth and elevation directions.
The second is a regression model where the model’s output is
the raw azimuth and elevation values. We trained all methods
and their variants on recordings with a sampling rate of 48kHz.

4. Results
4.1. Objective Evaluations

Localization: We evaluate the models for localization errors
(both az and el) on a held-out set of recordings from D1 and
D2. We report the root-mean-square errors (RMSE) between
the predicted localization and the ground truth estimates (in
degrees). The results are shown in Table 1. The RMSE scores of
our models are low compared to other baseline methods.

Monotonicity: We create a test dataset having non-matched
audio recordings at increasing angular distances, and compute
Spearman rank order correlation (SC) between the distance
from the metric and angular distance. The results are reported
in Table 1. Our combined model has the highest SC score
suggesting a strong correlation between increasing angular
distance and model distance - indicative of monotonicity.

Content in-variance: To evaluate robustness to content vari-
ations, we created two groups of test datasets: one consists
of pairs of recordings with the same localization but different
speech content; the other contains pairs of recordings with dif-
ferent localizations and speech. We calculate the common area
(CA) between normal distributions computed across the mod-
els’ output from the two groups. The smaller the common area,
the greater the “difference” between the two groups. As shown
in Table 1, our combined framework has the lowest CA score,
suggesting in-variance to content.

Retrieval: We evaluate retrieval performance to measure the
quality of the top-K items in the ranked list. We divide the entire
localization space into 20 groups, each group consisting of 100
recordings with the same source location, but different speech
content. We took randomly selected queries and calculate the
number of correct class instances in the top-K retrievals, and
report mean precision@K (MPk) over test queries. Most models
have high precision suggesting that embeddings capture SQ
attributes (see Table 1).

4.2. Subjective Evaluations
We validate the correlation of our trained metric with subjective
ratings using a dataset of publicly available subjective ratings.

Name Models RMSE on D1 ↓ RMSE on D2 ↓ SC ↑ CA↓ Precision↑
AZ EL AZ EL AZ EL MP10 MP25

DML

Metric L. - - - - 0.85 0.49 0.16 0.88 0.88
+ SSL 9.47 8.80 18.90 7.65 0.94 0.65 0.18 0.93 0.91
+ Bin. dec. - - - - 0.91 0.50 0.15 0.89 0.88
+ Combined 8.30 6.90 14.45 7.15 0.96 0.66 0.15 0.93 0.90

SSL Classif. 11.90 9.20 24.20 9.41 0.93 0.51 0.24 0.92 0.88
Regres. 13.20 12.90 23.01 14.11 0.94 0.58 0.23 0.91 0.89

Baseline

BAMQ - - - - 0.16 0.02 0.79 - -
DPLM 19.45 23.54 18.99 24.56 0.93 0.25 0.25 0.87 0.79
SAQAM 17.01 19.26 17.29 20.21 0.94 0.41 0.19 0.92 0.89
GPSM+BMFD - - - - 0.93 0.56 0.17 - -

Table 1: Objective evaluations: Models evaluated include:
DML models, SSL models (e.g., classification and regression),
and baseline models including BAMQ, DPLM, SAQAM, and
GPSM+BMFD. ↑ or ↓ is better.
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Type Name P1 P1’ P2 P3 P4 2AFC
Speech Castanets Guitar Speech Castanets Music Speech Pink Noise Guitar Pink Noise Vocals Castanets Glocken EM AM

DML

Original 0.84 0.83 0.87 0.57 0.78 0.48 0.55 0.19 0.17 0.47 0.49 0.45 0.45 0.49 0.69 82.80
+SSL 0.92 0.88 0.94 0.81 0.94 0.71 0.81 0.79 0.49 0.58 0.56 0.50 0.48 0.61 0.79 83.20
+Bin. dec 0.89 0.85 0.91 0.75 0.89 0.65 0.64 0.45 0.31 0.49 0.51 0.45 0.46 0.57 0.76 85.01
+Combined 0.96 0.97 0.97 0.88 0.99 0.79 0.81 0.79 0.61 0.58 0.65 0.51 0.56 0.69 0.89 87.95

SSL Classif. 0.96 0.95 0.89 0.85 0.97 0.48 0.75 0.25 0.18 0.50 0.59 0.39 0.47 0.49 0.81 77.20
Regres. 0.94 0.96 0.93 0.87 0.94 0.51 0.79 0.21 0.21 0.43 0.60 0.39 0.48 0.51 0.81 80.18

Baseline

BAMQ 0.03 0.83 0.09 0.52 0.77 -0.17 0.42 0.65 0.08 -0.02 0.36 0.11 -0.05 0.23 0.18 60.75
DPLM 0.94 0.94 0.94 0.83 0.94 0.45 0.69 0.22 0.06 0.53 0.61 0.42 0.47 0.67 0.83 78.96
SAQAM 0.96 0.95 0.94 0.88 1.0 0.52 0.78 0.23 0.26 0.53 0.60 0.49 0.47 0.69 0.82 79.12
GPSM+BMFD 0.94 0.96 0.89 0.35 0.86 0.83 0.71 0.94 0.58 0.58 0.60 0.41 0.53 0.57 0.83 83.20

Table 2: Subjective evaluation: Models evaluated include DML models, SSL models (e.g., classification and regression), and baseline
models including BAMQ, DPLM, SAQAM, and GPSM+BMFD. Spearman Correlation (SC). ↑ is better.

We select four distinct classes of datasets: (1) Bilateral Ambison-
ics (P1 and P1') from [32]; (2) Spherical Microphone Array
(P2) from [33]; (3) Headphone Equalization (P3) from [5]; and
(4) Bitrate Compressed Ambisonics (P4) from [6]. We compute
Spearman correlation (SC) score between the model’s predicted
distance with the publicly available subjective ratings. The re-
sults is shown in Table 2. Note that, in addition to evaluating on
speech recordings, we included experiments on generic audio
signals (Castanets, Guitar, Music, Pink Noise, etc.) to show
that our model generalizes across domains without any specific
fine-tuning for any objective or subjective evaluation task.

Additionally, we conduct a 2-Alternative Forced Choice
(2AFC) test where we presented one reference and two test
recordings and asked listeners which one of the test recording
sounded more similar to the reference. Roughly five listeners
evaluate each triplet. We calculate our models’ output on each of
these triplets and report a ratio of how many of these it follows
(shown in Table 2). Overall, we see that our DML models
improve in correlation with subjective ratings as more tasks are
added. In most of the objective and subjective evaluations, the
DML model performs better than SSL-based approaches. This
is primarily due to the fact that DML approaches are trained for
content in-variance explicitly, whereas SSL-based approaches
are not. Since DML-based approaches learn a better separation
between content and spatial cues, they tend to generalize better.
Moreover, we also see the regression-based SSL model performs
better than the classification-based SSL model suggesting that
optimizing for finer estimates leads to a better-performing model.
It is worth noting that the best-performing model overall is
the DML model with both SSL and Binaural-decoder tasks
combined, which we call the SQM-BS metric.

4.3. Ablation analysis
2-channel inputs In most cases, we may have the mono channel
present corresponding to the binaural signal. To investigate the
usefulness of the 3-channel (binaural + mono) input, we train
another model solely on binaural channels as inputs. Table 3
shows the results on localization error and correlation with
subjective ratings. We see that the 2-channel input model
performs inferior to the 3-channel model, especially in elevation
localization. This is primarily because our model is designed
to extract inter-channel information between the L and mono,
R and mono, and L and R channels, thereby enforcing the
inter-aural time and phase differences between the inputs and

Name RMSE D1 ↓ P1 ↑ P2 ↑ P3 ↑
AZ EL Speech Castanets Guitar Music Speech Pink Noise Guitar

SQM-BS 8.30 6.90 0.96 0.97 0.97 0.79 0.81 0.79 0.61
2ch input 14.45 16.21 0.57 0.69 0.75 0.45 0.42 0.45 0.14
Low pass
+ 16k 10.90 13.90 0.83 0.92 0.94 0.70 0.76 0.59 0.36
+ 8k 11.40 14.90 0.77 0.90 0.91 0.66 0.71 0.51 0.32

Table 3: Ablation studies. Sec 4.3 describes RMSE D1, and
Spearman correlations across 3 datasets. ↑ or ↓ is better.

disambiguating between source content and loudness level
changes with depth changes. For example, if the mono signal
is amplified directly by 10dB, the signal received at the left
and right ears will be amplified relatively by the same amount.
Because our model architecture learns the relative differences
(for example, between mono-L, mono-R, and L-R), there is no
relative gain.

Sampling rate: In order to assess the performance gains using
a model trained on higher fidelity inputs (e.g., full bandwidth
signals with 48kHz), we train three models on data that have
been down-sampled to 8kHz and 16kHz. We observe a trend
that suggests that the performance (localization error, MOS
correlation, etc.) increases as the sampling frequency increases
(see Table 3).

PESQ↑ STOI↑ L2↓ M.STFT↓ Si-SDR↑
Noisy 1.15 70.90 0.058 0.32 -1.51

L1 1.65 83.60 0.013 0.18 9.15
SQM-BS 2.19 88.50 0.011 0.10 11.20

Table 4: Evaluation of enhancement models using a held-out
test set with objective measures.
4.4. Binaural speech enhancement
To demonstrate the utility of our metric as a differentiable loss,
we took the binaural speech enhancement (SE) model designed
in [20] as a baseline. We applied our best-performing SQM-
BS model as a loss function to train the SE system from
scratch. We followed the same training routine described in the
original work. We evaluated the final SE model on unseen audio
recordings from a dataset [34, 35]. Following prior works in SE,
we evaluate the quality of enhanced binaural recordings using a
variety of objective measures: i) PESQ; (ii) Short Time Objective
Intelligibility (STOI); (iii) L2 distance on the waveform; (iv)
Scale-invariant signal to distortion ratio (Si-SDR); and v) Multi-
resolution STFT evaluated over each channel separately and then
averaged to get a single value. As shown in Table 4, SE model
trained with SQM-BSas a loss function have higher scores than
the baseline. This highlights the usefulness of our proposed
set of models in audio similarity tasks, especially in identifying
and eliminating minor human perceptible artifacts that are not
captured by traditional losses.

5. Conclusions and Future work
We presented a new metric SQM-BS that assesses localization
similarity between binaural signals based on triplet learning and
multi-task learning using sound source localization (SSL) and
binaural speech synthesis as two additional tasks. We compare
our proposed approach to existing baseline models in terms
of several properties such as localization errors in (un)seen
environments, monotonicity with increasing angular distance, in-
variance to content, and retrieval performance, and find that our
proposed approach outperforms them. We also demonstrated the
utility of our metric as a differentiable loss function. Because our
model was trained on speech signals, its application is limited
to speech recordings; however, future research could extend our
model to handle other types of sounds, such as music.
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