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Abstract
It is widely known that the presence of multi-speaker babble
noise greatly degrades speech intelligibility. However, sup-
pressing noise without creating artifacts in human speech is
challenging in environments with a low signal-to-noise ratio
(SNR), and even more so if noise is speech-like such as bab-
ble noise. Deep learning-based systems either enhance the
magnitude response and reuse distorted phases or enhance the
complex spectrogram. Frequency transformation block (FTB)
has emerged as a useful architecture to implicitly capture har-
monic correlation which is especially important for people with
hearing loss (hearing aid/ cochlear implant users). This study
proposes a complex-valued frequency transformation network
(CFTNet) for speech enhancement, which leverages both a
complex-valued U-Net and FTB to capture sufficient low-level
contextual information. The proposed system learns a complex
transformation matrix to accurately recover speech in the time-
frequency domain from a noisy spectrogram. Experimental re-
sults demonstrate that the proposed system can achieve signif-
icant improvements in both seen and unseen noise over state-
of-art networks. Furthermore, the proposed CFTNet can sup-
press highly nonstationary noise without creating musical arti-
facts commonly observed in conventional enhancement meth-
ods.
Index Terms: Speech Enhancement, Complex-value Network,
Frequency Transformation Block, Deep Neural network, U-Net

1. Introduction
Cochlear implants (CI) allow CI recipients to achieve near-
to-normal speech intelligibility in quiet acoustic conditions.
However, speech understanding in the presence of background
sounds or competing talkers is one of the main challenges for CI
users in daily life [1, 2]. Speech enhancement (SE) techniques
have been utilized to eliminate background noise from captured
speech signals and are beneficial [3, 4, 5]. More recently, deep
neural network-based approaches have shown considerable im-
provements in performance by reducing non-stationary noise
[4, 6, 7, 8]. Unlike most signal processing methods, deep neu-
ral networks learn patterns for speech enhancement and gen-
eralize them to larger unseen scenarios with the help of non-
linear optimization. Convolutional neural networks (CNN) can
efficiently address local temporal-spectral structures of speech
and can effectively separate the speech and noise components
in noisy signals [9]. However, CNN models cannot preserve
global information and spatial arrangement of the previous fea-
tures [10]. More specifically, DNN- and CNN-based models
have limited capability to restore high-frequency components
of speech, thus leading to a lower speech-to-distortion ratio of
enhanced speech. In addition, correlation in harmonics refers to

the presence of similar patterns in the distribution of frequencies
present in a signal or image. In natural images, these harmon-
ics are mostly local and can take the form of repeating patterns
in texture while those in speech frequency spectrograms are
non-local and can be seen as repeating peaks in the frequency
spectrum. Therefore, conventional CNN kernels cannot cap-
ture the harmonics. Alternatively, fully convolutional networks
(FCN) can model high and low-frequency components of raw
waveforms simultaneously [10]. To further increase the perfor-
mance and ability of speech-denoising techniques, researchers
have used various architectures such as U-Net [11, 12, 13, 14],
ResNet [15], DenseNet [16], Convolutional Recurrent Net-
work (CRN) [17] and R-CED [18]. Among them, U-Net-like
models have been successfully used in several speech applica-
tions such as speech denoising [14], speech dereverberation
[11], speech to language technology [19] etc.

Typically, U-Net compresses features along the encoder
and then reconstructs along the decoder. To localize, high-
resolution features from the contracting (encoder) path are com-
bined with the up-sampled (decoder) path to increase the reso-
lution of the reconstructed speech. Several studies showed that
common noise reduction algorithms suppress some of the har-
monics that exist in the original signal, which directly influ-
ences speech quality [20, 21]. This suggests that the regenera-
tion of such harmonics can restore distorted frequencies and im-
prove the quality of the enhanced signal. Therefore, the existing
U-Net structure-based SE algorithms cannot efficiently exploit
harmonics and thus produce musical noise in the enhanced sig-
nal [22]. In addition, most of these SE networks focus only
on processing the magnitude spectrogram and use the original
noisy phase to reconstruct the signal. Recent studies have re-
vealed that phase plays a crucial role in perceptual quality in SE
[19] and this motivated the researcher to design different phase-
aware SE networks such as deep complex convolution recurrent
neural (DCCRN) networks [23].

In this study, we introduce a complex-valued frequency
transformation network (CFTNet) for speech enhancement.
CFTNet uses U-Net style CNN as a backbone [12] and incor-
porates frequency transformation layers (FTL) to exploit corre-
lation among all frequency harmonics, which have been proven
to be useful to capture global correlations over frequency for T-
F representations [24]. This allows the network to use limited
frequency information to reconstruct missing frequency com-
ponents in the distorted signal. The proposed CFTNet employs
complex-valued convolution in the encoder/decoder layers and
complex-valued GRU at the bottleneck based on its effective-
ness to reconstruct enhanced phase along with enhanced mag-
nitude.

This paper is organized as follows: Sec. 2 briefly introduces
the proposed CFTNet for single-channel speech enhancement.
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Figure 1: Fig. 1. Basic block diagram of CFTNet with the complex frequency transformed module.

Details on the experimental setup are discussed in Sec. 3, fol-
lowed by results in Sec. 4. Finally, we conclude this study in
Sec. 5.

2. Methodology
Here, we briefly discuss the standard U-Net and then propose
modifications that construct CFTNet and the proposed SE net-
work.

2.1. General Network Architecture

The goal of CFTNet is to parse degraded speech and recover
high-quality signal content. The overall architecture of the pro-
posed CFTNet is depicted in Fig. 1. The network consists
of three main components: (i) a fully convolutional complex-
valued encoder-decoder network (Cplx-UNet), (ii) complex-
valued SkipBlocks (SB) within the skip connections between
encoder and decoder, and (iii) complex-valued frequency trans-
formation modules. The encoder network is designed using a
series of encoder blocks followed by an FTL module in the al-
ternate layers until the encoder downsamples to a single pixel.
This ensures the decoder uses all spectral and temporal features
learned by the encoder. Each encoder/decoder block is built
upon complex-valued convolution layers to ensure successive
enhancement of both magnitude and phase. A complex convo-
lutional block in the skip connection reduces the semantic gap
between the encoder and decoder blocks and thus guides the
decoder to reconstruct the enhanced output. Although U-Net
can capture contextual correlation for prediction, it yields less
attention toward harmonic correlation. The proposed CFTNet
can capture long-range dependencies and correlations among
harmonics using FTL layers that CNN does not possess due to
its localized receptive fields. Therefore, CFTNet employs an
FTL block along with the encoder layer to exploit harmonic
structures in the frequency components.

2.2. Complex-Valued Encoder/Decoder Layer

Complex convolution is the key difference between a complex-
valued network and a real-valued network. The use of com-
plex convolution in the U-Net architecture is to perform con-
sistent improvement in both magnitude and phase in a T-F
representation of noisy speech toward reconstructing a clean
speech signal. Each complex-valued encoder layer in the pro-
posed network consists of a complex convolution layer followed
by complex batch normalization and complex nonlinear acti-
vation function. The complex-valued decoder layer is like a
complex-valued encoder layer except complex convolution is

substituted for complex-transpose convolution. Next, an algo-
rithmic formulation of the complex convolution is presented.
Let X = Xr + jXi represent the complex input such that
W = Wr + jWi represents the complex kernel of the network.
The resulting output of the convolution can be represented as,

Z = W ∗X = (Wr + jWi) ∗ (Xr + jXi)

Z = (Wr ∗Xr +Wi ∗Xi) + j(Wr ∗Xi −Wi ∗Xr)

2.3. Complex-valued Frequency Transformation (FTL)

A frequency transformation block is a technique for relating
correlation among harmonics along the frequency axis in a T-
F representation [24]. A complex FTL is inserted after en-
coder layers so that output features have a full-frequency recep-
tive field. In the speech, existing networks employ FTL frame-
works with real-valued networks that operate on the magnitude
response [22]. Here, we extend the FTL framework to ad-
dress the complex domain by proposing a complex-valued FTL
module that attends to features in frequency while maintain-
ing interdependence between real and imaginary components
of the complex-valued feature map. The FTL module consists
of three stacked CNN layers in the attention module: (1) one
fully connected layer, (2) one CNN layer used in a frequency
transformation matrix (FTM), and (3) one CNN layer used for
concatenation. Consider a set of complex-valued feature maps,

U0(t)εT × F × C

that is extracted from stacked CNN layers in the encoder con-
sisting of a sequence of 1-D frequency vectors with a total of T
frames. The trainable FTM can then be represented as,

WFTMεRF×E ,

where C, T, and F denote the channels, time, and frequency
axis, respectively. We first apply the attention module to the
incoming feature maps, which are then point-wise multiplied
with the input features to exploit the inter-channel relationship
of the features and output Ua. Next, a trainable FTM is applied
to the feature maps at the time step, t0, and ensures the global
frequency correlation along the frequency axis. Finally, the out-
put features of the FTM module are concatenated with the input
features, U0(t) using a CNN layer to ensure both global and
local frequency correlation among harmonics.

2.4. Complex-valued SkipBlocks

A skip connection in a U-Net architecture passes high-
dimensional features from the encoder layer to the appropri-
ate decoder layer. This enables the network to preserve spatial
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features lost during the down-sampling operation and guides
the network to propagate from encoder to decoder. Although
skip connections have been shown to significantly impact the
development of robust networks, a recent study [25] identi-
fied a possible semantic gap while sharing features between the
encoder and decoder and strengthening feature representation.
This could be due to incompatible feature sets shared between
the encoder and decoder that cause an adversarial impact on
speech synthesis. Inspired by the success of image segmenta-
tion [25] and speech dereverberation [11], this study uses com-
plex convolution blocks in the skip connection. This ensures
a network that shares similar spectral information to improve
learning capabilities.

3. Evaluation Methods
The speech stimuli used in this study were sentences from
TIMIT [26]. The dataset consists of 6,300 phonetic transcribed
speech utterances (approx. 3.5 hours) of American English
speakers. The length of each sentence varies from 3 to 5 sec-
onds. A subset of 800 sentences was used to train the model.
These sentences were distorted with eight different noises from
the AURORA dataset at 5 different SNRs: -10, -5, 0, 5, and
10 dB. These environmental noise conditions included sam-
ples from the following: airport, babble, car, exhibition, sta-
tion, street, speech-shaped, and white Gaussian noise. A sec-
ond subset of 50 samples was used to test the model distorted in
three seen (babble, car, and speech-shaped noise) and two un-
seen (restaurant and train) noise types at 7 different SNR levels
(-7.5, -5, -2.5, 0, 2.5, 5, and 10 dB). Seen noise refers to the
noise type which is seen by the model during training whereas
unseen noise is completely unknown by the model. All speech
samples and noises were resampled at 16 kHz.

3.1. Network Architecture

Complex-valued frequency transformation network uses a fre-
quency transformation block, complex-valued convolution, and
complex-valued GRU layers to estimate a generalized non-
linear mapping from a noisy speech T-F spectrum to a corre-
sponding clean speech spectrum. First, the short-time Fourier
transform (STFT) of the speech signal with a frame size of 16
ms and an overlap of 8 ms is computed. Next, the network ar-
chitecture with eight layers of encoder-decoder pairs, four FTB
layers, two GRU layers as bottleneck layers, and convolution
layers in the skip connections are employed as shown in Fig.
1. Each encoder layer uses convolution layers with a kernel
size of 3 × 3 and stride of 2 × 1. Similarly, decoder layers use
the same parameters apart from the transposed convolution. To
ensure harmonic correlation in the frequency axis, we use an
FTB layer in each alternate layer of the encoder. Parameters of
the FTB layer are selected based on the parameters in the cor-
responding encoder layer. The proposed system is based on
the complex spectrogram using complex-valued convolutions
and complex-valued GRU layers to ensure consistent advance-
ment in both magnitude and phase. The network is trained for
50 epochs with an Adam optimizer, an initial learning rate of
0.0003, and a batch size of 16. Lastly, a combination of scale-
invariant signal-to-distortion ratio (SI-SDR) loss and frequency
loss (STFT loss) was used as an objective function to minimize
mean square error (MSE) between the network prediction and
the corresponding clean spectrogram. This STFT loss calcu-
lates the spectral convergence and spectral magnitude losses in
the STFT domain where SI-SDR is responsible for channel vari-

ations, interference, and artifacts in the time domain signal.

3.2. Evaluation metrics

A total of 5 objective metrics is used to evaluate the intelligibil-
ity and quality of reconstructed speech. Short-time objective in-
telligibility (STOI) and perceptual evaluation of speech quality
(PESQ) are frequently used intrusive metrics for speech intelli-
gibility and quality measurement [27, 28]. STOI is a function
of T-F representation of the signal that compares temporal en-
velopes of estimated and reference signals in short-time regions
and maps them to a range between [0, 1]. PESQ for the narrow
band is a perceptual evaluation related to subjective opinion and
varies from -0.5 to 4.5. Spectrogram orthogonal polynomial
measure (SOPM) predicts speech intelligibility using orthogo-
nal polynomial features and varies from 0 to 1 [29]. To inves-
tigate distortion in the frequency domain, the log-spectral dis-
tance (LSD) and scale-invariant signal-to-distortion ratio (SI-
SDR) metrics are used as objective metrics [30]. The higher
the objective score, the better the quality, except for LSD.

4. Results
This section presents simulated results of the proposed CFTNet
algorithm in terms of objective scores. Performance is evaluated
using a speech intelligibility metric, a quality metric, and two
speech distortion metrics. The estimated scores for the CFT-
Net are compared with scores from three existing algorithms
for different seen and unseen noises and SNRs. In addition, the
effect of different loss functions on the training of the proposed
algorithm is also presented.

Table 1: Mean objective scores for CFTNet model trained using
five different loss functions. Significance is denoted in bold at
the level.

 Loss 
Function 

Objective Metric 
STOI PESQ SISDR LSD SOPM 

Unprocessed 0.69 1.30 0.35 6.72 0.76 
SISDR 0.82 1.58 4.79 9.24 0.84 

STFTLoss 0.81 1.76 -15.94 3.96 0.76 
SNRLoss 0.83 1.54 -8.52 4.72 0.87 
SISDR+ 

a*FreqLoss 0.86 2.14 8.05 3.25 0.88 

4.1. Effect of loss function on CFTNet

Speech intelligibility and quality of a speech signal improve
when the loss between the reconstructed and target signal de-
creases. A proper selection of loss functions guides the net-
work to the global minima. Different objective metrics are
used as a loss function to evaluate the network performance
with seen and unseen objective metrics. Table 1 represents the
mean objective scores for the proposed network for 5 different
loss functions. The objective score represents the mean score
for 50 speech samples distorted at five different noisy condi-
tions and seven different SNRs. In general, the objective score
for the unprocessed signal is lower than the CFTNet, irrespec-
tive of the objective metric and loss function. The combination
of time-domain and frequency-domain, metrics demonstrated
the best performance with respect to the other four objective
metrics. Therefore, the combination of SI-SDR and STFTLoss
(with α = 25) metric is used as a loss function for the proposed
network and for further evaluation.
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4.2. Effect of seen and unseen noise on CFTNet

To analyze the performance of the proposed network in seen
and unseen noises and SNRs, objective scores are computed for
different noises and presented in Table 2. Each score represents
the average objective intelligibility or quality score of 150 and
100 speech samples for seen (50×3) and unseen (50×2) noise,
respectively. In general, objective scores for enhanced speech
are higher than unprocessed speech. Improvement in STOI is
higher for lower SNRs and improvement in PESQ is higher for
higher SNRs. Performance is found to increase as seen noise
and SNRs were incorporated into the training set.

Table 2: Mean objective scores for CFTNet model trained using
five different loss functions. Significance is denoted in bold at
the level.

 
STOI PESQ 

SNR 
(dB) 

Seen Noise Unseen Noise Seen Noise Unseen Noise 
Noisy Enh. Noisy Enh. Noisy Enh. Noisy Enh. 

-7.5 0.50 0.80 0.51 0.64 1.14 1.67 1.15 1.22 
-5 0.56 0.83 0.56 0.71 1.14 1.86 1.17 1.32 
-2.5 0.63 0.87 0.64 0.78 1.17 2.07 1.20 1.50 
0 0.69 0.90 0.71 0.84 1.21 2.32 1.25 1.73 
2.5 0.77 0.92 0.77 0.88 1.30 2.55 1.99 1.95 
5 0.81 0.94 0.83 0.91 1.39 2.76 1.41 2.28 
10 0.91 0.97 0.91 0.96 1.68 3.17 1.68 2.88 
Mean 0.70 0.89 0.70 0.82 1.29 2.34 1.41 1.84 

 
4.3. Ablation study

To analyze the performance of the proposed network, predicted
scores for the CTFNet are compared with scores from three dif-
ferent existing networks, CRN [17] and UNet-SCB [11], DC-
CRN [23]. Scores are predicted for 50 samples at five different
noises and seven different SNRs and averaged scores are re-
ported in Table 3. Relative enhancement achieved by different
algorithms is measured using STOI, PESQ, SI-SDR, and LSD
metrics. Results indicate that the proposed CFTNet provides
benefits in speech enhancement in terms of all four-objective
metrics over unprocessed signals and the enhanced signal from
CRN, UNet-SCB, and DCCRN networks.

Table 3: Ablation study of the proposed network. Average im-
provement across all noise types and SNRs are presented in
terms of STOI, PESQ, SI-SDR, and LSD.

 Models STOI PESQ SI-SDR SOPM  LSD 
Noisy 0.69 1.29 0.35 0.76 6.72 
CRN 0.71 1.30 1.60 0.81 8.80 
UNet-SCB 0.72 1.35 2.14 0.78 6.50 
DCCRN 0.80 1.62 4.90 0.87 3.14 
CFTNet 0.86 2.14 8.05 0.88 3.25 

5. Conclusion
To analyze the performance of the proposed network, predicted
scores for the CTFNet are compared with scores from three dif-
ferent existing networks, CRN and UNet-SCB, DCCRN. Scores
are predicted for 50 samples at five different noises and seven
different SNRs and averaged scores are reported. Relative en-
hancement achieved by different algorithms is measured using
STOI, PESQ, SI-SDR, and LSD metrics. Up-and-downward ar-
rows represent improvement using different objective metrics.
Results indicate that the proposed CFTNet provides benefits in

speech enhancement in terms of all five objective metrics over
unprocessed signals and the enhanced signal from CRN, UNet-
SCB, and DCCRN networks.
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