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Abstract

We present a novel speech dataset for face mask type and
coverage area recognition collected with a smartphone. The
dataset contains 2h 27 m 55 s of data from 30 German speak-
ers (151, 15 m). The baseline results exploit the functionals of
the eGeMAPS feature set, the Mel-spectrogram, and the spec-
trogram representations of the audio samples. To model the
one-dimensional features, we investigate Support Vector Classi-
fiers (SVC) and a neural network classifier. We extract salient
information from the two-dimensional representations with Con-
volutional Neural Network (CNN) based encoders, coupled with
a classification block. We use the Unweighted Average Re-
call (UAR) as the evaluation metric. For the face mask type
and the coverage area recognition tasks (3-class problems), the
best models on the test partition score a UAR of 49.3 % and
47.8 %, respectively. For the face mask type and coverage area
recognition task (5-class problem), the optimal model on the test
partition obtains a UAR of 35.0 %.

Index Terms: Face Mask Type Recognition, Face Mask Cover-
age Area Recognition, Paralinguistics, Health

1. Introduction

Amid the still on-going worldwide pandemic caused by the Coro-
navirus Disease 2019 (COVID-19), governments are lifting the
obligatoriness of wearing face masks, for instance, in public
places or the public transport. Current face mask mandates
mainly apply in health facilities, including hospitals, doctors’
offices, or pharmacies. Despite the relaxation in the usage of
face masks, it is important to remember the effectiveness of
this instrument to help control the spread of COVID-19 [1] and
reduce the number of COVID-19 deaths [2]. Hence, the devel-
opment of face mask monitoring tools can, in turn, contribute to
the spread control and the mortality rate reduction of airborne
diseases, such as COVID-19 [3, 4].

The research on face mask detection exploiting visual and
acoustic signals with Artificial Intelligence (Al) has been in-
tensified in the last years, motivated by the current pandemic
context. In the computer vision literature, transfer learning-
based approaches are vastly explored [5, 6, 7, 8, 9]. Related
works in this domain also propose hybrid models combining
deep and classical machine learning techniques [10]. The release
of the Mask Augsburg Speech Corpus (MASC) as part of the
INTERSPEECH 2020 Computational Paralinguistics ChallengE
(CoMPARE) [11] motivated the computer audition research com-
munity to start working on this problem [12]. Related works anal-
yse the speech changes produced by wearing a mask [13, 14], use
deep neural networks on the spectrogram or the Mel-spectrogram
representations of the audio signals [15, 16], and investigate
transfer learning-based solutions [17, 18].

The main limitation of the MASC dataset is that it only
includes speech samples from participants wearing a surgical
face mask. This might be attributed to the pre-pandemic context
in which the data was gathered. After the outbreak of COVID-
19, we have all learnt that different face mask types offer a
different protection level against the virus [19]. Consequently,
the research community has redefined the face mask detection
problem from speech accordingly. Researchers in [20] consider
in their study other types of face masks and include tissue masks,
medical masks, FFP2 and FFP3 protective masks, respirators,
and protective face shields. However, not only the face mask type
is important to control the spread of airborne diseases. Wearing
the face mask over the nose and the mouth is also an important
aspect [21]. Yet, as this can be more or less annoying, especially
for a longer time, some people also tend to wear the mask not
‘comme il faut’ but, for instance, with the nose uncovered.

In an attempt to reflect this reality, we introduce the Mask
Augsburg Speech Corpus using FFP2 and surgical masks with
the alrways Covered Halfway and compleTely (MASCFLICHT),
a novel dataset for face mask type and coverage area recognition
from speech collected with a smartphone. This dataset includes
audio samples from participants wearing a surgical or an FFP2
face mask only covering the mouth or covering both the mouth
and the nose. Herein, we describe the data collection procedure
and detail the preliminary experiments conducted to partition the
data, so it can be used to benchmark future research. We also
provide baseline results exploring the functionals of the extended
Geneva Minimalistic Acoustic Parameter Set (eGeMAPS) [22]
as one-dimensional representations of the audio samples, and
Mel-spectrograms and spectrograms as two-dimensional repre-
sentations. The baseline results tackle the problem from three
different perspectives: targeting i) the face mask type recogni-
tion, ii) the face mask coverage area recognition, and iii) the face
mask type and coverage area recognition.

The rest of the paper is laid out as follows: Section 2 de-
scribes the MASCFLICHT Corpus, while Section 3 details the
methodology followed. Section 4 compiles and analyses the
results obtained, and Section 5 concludes the paper.

2. The MASCFLICHT Corpus

This section introduces the dataset. While Section 2.1 describes
the data collection process, Section 2.2 details the pre-processing
applied to the raw samples, and the data partitioning procedure.

2.1. Data Collection

The MASCFLICHT Corpus' contains 2h 27 m 55 s of speech
samples from 30 German participants (15 f, 15 m) recorded with
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Table 1: Summary with the number of F(emale) and M(ale) 1 s-length audio samples available in the MASCFLICHT Corpus per partition
and condition. The conditions considered are encoded as: i) NM: No Mask, ii) SP: Surgical Partial — only covering the mouth with a
surgical mask, iii) ST: Surgical Total — covering both the mouth and the nose with a surgical mask, iv) FP: FFP2 Partial — only covering
the mouth with an FFP2 mask, v) FT: FFP2 Total — covering both the mouth and the nose with an FFP2 mask.

.pe Train Devel Test
Condition >
F M > F M > F M >
NM 571 563 1134 165 155 320 187 147 334 1788
SP 548 576 1124 178 140 318 179 164 343 1785
ST 549 574 1123 153 139 292 194 161 355 1770
FP 562 564 1126 170 143 313 181 162 343 1782
FT 572 527 1099 171 154 325 168 158 326 1750
> 2802 2804 5606 837 731 1568 909 792 1701 8875

the microphone embedded in a Xiaomi Mi 10 smartphone. Par-
ticipants’ age ranges from 19 to 55 years old, with a mean age of
25.7 years and a standard deviation of 9.1 years. Prior to the data
collection, participants read and signed an Informed Consent
Form (ICF), which received ethics approval from the university’s
ethics committee.

Participants’ voice was recorded under five different con-
ditions: 1) without face mask (NM: No Mask), ii) wearing a
surgical mask only with the mouth covered (SP: Surgical Par-
tial), iii) wearing a surgical mask with both the mouth and the
nose covered (ST: Surgical Total), iv) wearing an FFP2 mask
only with the mouth covered (FP: FFP2 Partial), and v) wearing
an FFP2 mask with both the mouth and the nose covered (FT:
FFP2 Total). Specifically, we employed the surgical face mask
from LyncMed, and the FFP2 face mask from IPOS. To assess
whether the aforementioned conditions are detectable from a
computational paralinguistics perspective, we collected the data
in a controlled environment, i. e., in a quiet room and maintaining
the speaker-smartphone distance constant.

We proposed to the participants a free and a guided speech
task. The free speech task included describing a picture, while
the guided speech task consisted in reading ten sentences. These
sentences were selected from the PD1 speech corpus® of the
Bavarian Archive for Speech Signals (BAS), which contains pho-
netically balanced German sentences. Both tasks were recorded
under all the five aforementioned conditions. Additionally, to
avoid participants’ habituation to the proposed tasks, five dif-
ferent, yet equivalent exercises were created for each task; i.e.,
we selected five different pictures, and five different sets of sen-
tences. As part of the data collection protocol, we followed a
rotation system, so that each tuple of picture and set of sentences
was collected under all the five investigated conditions. In other
words, we fixed the tasks order, but each participant followed a
rotated sequence of the investigated conditions when recording
the samples. Each sequence of conditions was repeated every
five participants.

2.2. Data Pre-Processing and Partitioning

The unvoiced frames in the recorded speech samples, which
might mainly be attributed to speakers’ silences during the
recordings, do not contain relevant information regarding
whether the corresponding speaker wears a face mask. Hence,
our first pre-processing steps is the detection and removal of the
unvoiced frames. We implement a Root-Mean-Square (RMS)-
based Voice Activity Detector (VAD) with a frame length of
64 ms and a 50 % overlap. We then scale the computed RMS
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using min-max normalisation. We empirically set a threshold
for the RMS of 0.1 to differentiate the voiced from the unvoiced
frames. To preserve the naturalness and intelligibility of the
processed speech samples, only when the VAD detects at least
10 consecutive unvoiced frames, we remove the corresponding
portion of the original signal. Next, we normalise the resulting
signal, so its amplitude ranges € [—1, 1], and discard the last
0.5's, which contains the acoustic feedback of the smartphone
interface when stopping the recording. Analogously to the pre-
processing applied in the MASC dataset [11], we finally segment
the processed speech samples into chunks of 1s length. The seg-
mented speech samples are downsampled to 16 kHz, converted
to mono, and stored with 16-bit PCM format.

After completing the data pre-processing, we distribute the
segmented speech samples into three — train, development, and
test — speaker-independent partitions, so that all the samples
corresponding to the same speaker are contained in the same
partition. In an attempt to balance the recognition difficulty
among the partitions, we follow a nested Leave-One-Speaker-
Out Cross-Validation (LOSO-CV) approach, splitting the sam-
ples in the inner loop into five speaker-independent folds, to
assess the performance of a preliminary model on each speaker
separately. This preliminary model targets the recognition of
the five conditions defined in Section 2.1. To this end, we train
a linear Support Vector Classifier (SVC), prior min-max nor-
malisation of the functionals of the eGeMAPS [22]. We use
OPENSMILE [23], version 2.2.0, to extract the features.

The C parameter in the SVC is defined as the hyperparame-
ter to optimise in this preliminary modelling. At each iteration of
the LOSO-CYV routine, with the speech samples corresponding
to one participant reserved for testing the optimal model, each
C € [1073,1072,1071,1] is used to iteratively train and test
a SVC model following a 5-fold cross-validation approach, in
accordance to the number of folds in which we distribute the data
in the inner loop. We average the Unweighted Average Recall
(UAR) scores obtained after testing the corresponding model on
each one of the five iteratively excluded folds to assign an overall
performance to each C' parameter. The C' value that obtains the
highest averaged UAR is defined as the optimal hyperparameter
in the current LOSO-CV iteration. The optimal C' is used to train
the optimal SVC which we finally test on the speech samples
corresponding to the initially excluded participant. With this
preliminary modelling, analysing the results obtained for each
individual participant globally, we achieve an averaged UAR of
32.8 % with a standard deviation of 5.4 %. As the task is tackled
as a 5-class classification problem, the chance level in terms of
the UAR is 20 %.

The resulting UAR scores per participant computed with the



Table 2: Performance summary of the face mask type recogni-
tion models trained in terms of the UAR (%); chance level at
33.3 %. We include the total number of trainable parameters per
model, and the optimal model training time.

Model UAR [%] Tr. Time

Features
Arch. # Param. Dev Test (MM:)SS
SVClinear 267 49.1 392 34
eGeMAPS  SVCrbf 267 492 493 32
NNC 443 48.5 469 18:41
CNNiscratch 7363 53.1 437 3:12
Mel-spec. RNlS%cratch 11179075 49.8 43.6 5:36
RN18frozen 2563 456 414 5:37
RN18tuned 11179075 544 492 29:11
CNNscratch 7363 47.6  39.1 1:54
Spec. RN18scratch 11179075 51.6  40.5 1:32
RN18frozen 2563 45.1  40.7 19:42
RN18tuned 11179075 559 49.1 12:33

preliminary modelling help us distribute the participants among
the train, development, and test partitions. Specifically, we select
and sort the female participants in descending order in terms of
the obtained UAR score. Then, we follow a Round-robin fashion
and distribute 60 %, 20 %, and 20 % of the female participants
among the train, development, and test partitions, respectively.
An analogous procedure is followed to distribute the male partici-
pants. With this approach, we not only guarantee that the dataset
partitions are gender-balanced, but also that the ‘difficulty of
recognition’ is homogenised across the partitions. To sum up,
the MASCFLICHT Corpus contains speech samples from 18
(91,9m), 6 (3f, 3m), and 6 (3 f, 3 m) participants in the train,
development, and test partitions, respectively. According to the
obtained participants’ distribution, we anonymise and randomise
the segmented speech samples to populate the train, develop-
ment, and test partitions. The statistics of the MASCFLICHT
Corpus are summarised in Table 1.

3. Methodology

This section describes the methodology followed in this work.
Section 3.1 defines the feature representations extracted from
the audio samples, Section 3.2 details the implementation and
the characteristics of the models assessed, and Section 3.3 sum-
marises the model training routines.

3.1. Feature Extraction

We investigate the performance of the functionals of the
eGeMAPS feature set [22], the Mel-spectrograms, and the
spectrograms as the representations to extract from the avail-
able speech samples, motivated by their successful application
in health-related problems found in the literature [24, 25, 26,
27]. We use OPENSMILE [23] to extract the functionals of
eGeMAPS, version 2.2.0; they characterise each speech segment
with a one-dimensional vector € R'*88_ We then compute the
Mel-spectrogram representations of the speech samples with
the 1ibrosa library [28], version 0.8.0. As parameters for
this calculation, we use 128 mels, a window length of 4096
samples (256 ms), and a hope size of 64 samples (4 ms). We
represent the Mel-spectrograms with a linear frequency scale.
Finally, we compute the magnitude of the Short-Time Fourier
Transform (STFT) of each speech sample using a window length
of 4096 samples (256 ms), and a hope size of 64 samples (4 ms)
to obtain its spectrogram representation. The spectrograms are
displayed with a logarithmic frequency scale and are also com-
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Table 3: Performance summary of the face mask coverage area
recognition models trained in terms of the UAR (%); chance
level at 33.3 %. We include the total number of trainable param-
eters per model, and the optimal model training time.

Model UAR [%] Tr. Time

Features
Arch. # Param. Dev Test (MM:)SS
SVClinear 267 51.7 457 33
eGeMAPS  SVCrbf 267 512 46.2 35
NNC 443 538 478 48:43
CNNscratch 7363 479 426 14:40
Mel-spec. RN18s.cratch 11179075 52.6 402 18:53
RN18frozen 2563 453 38.1 1:51
RN18tuned 11179075 541 441 11:49
CNNscratch 7363 489 423 18:35
Spec RN18scratch 11179075 489 416 1:24
: RN18frozen 2563 434 38.1 22:20
RN18tuned 11179075 52.8 412 10:25

puted using the 1ibrosa library. The magnitude of both the
Mel-spectrogram and the spectrogram representations are con-
verted to dB, min-max normalised, and stored as colour images
of 224 x 224 pixels for further processing.

3.2. Model Description

To model the representations extracted in Section 3.1, we select
standard machine learning and deep learning techniques. We
investigate a linear kernel-based SVC (SVClinear), and a Radial
Basis Function (RBF) kernel-based SVC (SVCrbf) to model
the functionals of the eGeMAPS. Both models apply min-max
normalisation to the input features prior to the model training.
‘We complement the modelling of the one-dimensional data with
a neural network classifier (NNC). This network implements
one Fully Connected (FC) layer — prior batch normalisation of
the input features — with 88 neurons at the input and as many
neurons at the output as classes we aim our model to recognise.

We explore neural networks composed of an encoder and
a classification block to model the two-dimensional represen-
tations of the speech samples, i. e., the Mel-spectrograms, and
the spectrograms. Specifically, in this work, we compare the
performance of two different encoder blocks, which are cou-
pled with the same classification block. The classification block
implements the architecture of the aforementioned NNC. The
only difference lies in the number of input neurons, which is
set to 512 in this case, according to the dimensionality of the
embedded representations extracted from the encoder block.

The first encoder (CNNscratch) implements one 2-
dimensional convolutional layer with 32 filters, a kernel size
of 7x7, and a stride of 1. Following the convolutional layer, we
use batch normalisation, and the output is transformed with a
Rectified Linear Unit (ReLU) function. A 2-dimensional adap-
tive average pooling layer is implemented at the end to produce a
feature map € R*** per filter. Finally, we reshape the resulting
feature maps, so that the encoder block outputs an embedded
representation € R'*512,

The second encoder is based on the ResNetl8 architec-
ture [29], but without the last layer. This way, it also produces
an embedded representation € R**?'2, Coupling this encoder
with the classification block motivates the investigation of three
different scenarios. The first scenario trains the encoder and the
classification blocks from scratch (RN18scratch). The second
scenario freezes the corresponding pre-trained weights from the
ResNet18 model, and only trains the weights of the classification
block (RN18frozen). Finally, the last scenario initialises the



Table 4: Performance summary of the face mask type and cover-
age area recognition models trained in terms of the UAR (%);
chance level at 20.0 %. We include the total number of trainable
parameters per model, and the optimal model training time.

Model UAR [%] Tr. Time

Features
Arch. # Param. Dev Test (MM:)SS
SVClinear 445 31.0 34.1 40
eGeMAPS  SVCrbf 445 31.1 337 39
NNC 621 319 35.0 12:29
CNNiscratch 8389 333 26.1 30:13
Mel-spec. RNlS%cratch 11180101 314 289 27:52
RN18frozen 3589 30.2 264 1:16
RN18tuned 11180101 340 337 7:28
CNNscratch 8389 329 305 17:38
Spec. RN18scratch 11180101 328 326 11:34
RN18frozen 3589 282 262 2:46
RN18tuned 11180101 351 313 7:23

encoder block with the ResNet18 pre-trained weights and trains
(fine-tunes) the whole network (RN18tuned).

3.3. Model Training

The parameter to optimise in the SVC-based models is
the regularisation parameter C. For each model in-
dividually, we conduct grid search among the C' €
[107%,1072,1072,107%,1,10", 10%]. The C parameter that
scores the highest UAR on the development partition is selected
to train the optimal SVC-based model, merging the samples from
the train and the development partitions. This optimal model
is then assessed on the test data. The SVC-based models are
implemented seeding the pseudorandom number generator and
using the scikit-1learn library [30], version 0.24.2.

All neural network-based models are trained under the exact
same conditions for a fair comparison. We use the Categorical
Cross-Entropy as the loss to minimise, using Adam as the op-
timiser with a fixed learning rate of 1073, We select UAR as
the evaluation metric and define Lyar = 1 — UAR as the vali-
dation error to monitor during training. Network parameters are
updated in batches of 64 samples and trained during a maximum
of 150 epochs. We implement an early-stopping mechanism to
stop training when the validation error does not improve for 20
consecutive epochs. With this training routine, we aim at de-
termining the optimal number of training epochs that minimise
the risk of overfitting. Neural network-based models are imple-
mented with the PyTorch library [31], version 1.7.0, seeding
the pseudorandom number generator at the models initialisation.

4. Experimental Results

This section presents the baseline results. Model performances
are reported in terms of UAR. For comparison purposes, we
include the number of trainable parameters per model, and the
training time of the optimal model, which merges the samples
belonging to the train and the development partitions.

Face Mask Type Recognition. Table 2 summarises the
results obtained with the face mask type recognition models.
The best UAR on the test partition is obtained with the SVCrbf
model exploiting the eGeMAPS, 49.3 %. Competitive results
are also achieved when modelling the Mel-Spectrogram and
the spectrogram representations with the RN18tuned model,
which scores a UAR of 49.2 % and 49.1 % on the test partition,
respectively. Furthermore, the RN18tuned model outperforms
the other encoder-based architectures. This result indicates the
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suitability of transfer learning in this problem, which could be
attributed to the small sample size of the dataset. Despite the
small performance difference among the three top-performing
models, there is a huge difference in the number of trainable
parameters and in the optimal model training time required,
which supports the choice of the SVCrbf model in this case.

Face Mask Coverage Area Recognition. Table 3 compiles
the performances achieved by the trained face mask coverage
area recognition models. The best UAR on the test partition is ob-
tained with the NNC model exploiting eGeMAPS, 47.8 %. When
characterising the speech samples with their Mel-spectrogram
representations, the RN18tuned model scores the highest perfor-
mance on the test partition with a UAR of 44.1 %. Nonetheless,
the CNNscratch model achieves the greatest performance with
the spectrogram representations on the test partition, 42.3 %. In
this case, we observe that the CNNscratch model outperforms
the RN18scratch and the RN18frozen models on the test parti-
tion. This result could indicate the appropriateness of simple
encoders to extract salient information from the two-dimensional
representations explored.

Face Mask Type and Coverage Area Recognition. Ta-
ble 4 collects the model performances scored by the face mask
type and coverage area recognition models. The best UAR
on the test partition is obtained with the NNC model exploit-
ing the eGeMAPS, 35.0 %. Although the RN18tuned model
scores the highest UAR with the Mel-spectrograms, 33.7 %, the
RN18scratch model achieves the greatest UAR with the spectro-
grams, 32.6 %, both on the test partition. Hence, ResNet18-based
encoders seem a reasonable choice in this case.

5. Conclusions

We introduced the MASCFLICHT Corpus, a novel dataset for
face mask type and coverage area recognition from speech col-
lected using a smartphone. We detailed the pre-processing ap-
plied to the raw speech samples and reported the procedure
followed to partition the data. In addition to introducing the
data, the goal of the paper was to provide baseline results. We
described the features extracted from the speech samples and de-
fined the models implemented to train the baselines. The results
obtained indicated the suitability of eGeMAPS as the feature
representation to extract from the speech samples. When tack-
ling the face mask type recognition problem, the SVCrbf model
scored the best UAR, 49.3 %. When addressing the face mask
coverage area recognition task, the NNC model obtained the
greatest UAR, 47.8 %. Finally, the face mask type and coverage
area recognition model that achieved the highest UAR, 35.0%,
implemented the NNC architecture. These performances were
assessed with the corresponding models on the test partition.
Follow-up studies should include confusion matrices and
feature relevance analysis. The baseline results open the door to
explore other representations and architectures. Further research
could investigate the use of Prototypical Networks with the aim
to create a prototypical embedding representative of each class.
Future works could also consider investigating personalisation
approaches to assess their impact on the presented tasks.
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